import copy import re from io import BytesIO from docx import Document import numpy as np from rag.app import callback__, bullets_category, BULLET_PATTERN from rag.nlp import huqie from rag.parser.pdf_parser import HuParser class Docx(object): def __init__(self): pass def __clean(self, line): line = re.sub(r"\u3000", " ", line).strip() return line def __call__(self, filename, binary=None): self.doc = Document( filename) if not binary else Document(BytesIO(binary)) lines = [self.__clean(p.text) for p in self.doc.paragraphs] return [l for l in lines if l] class Pdf(HuParser): def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None): self.__images__( filename if not binary else binary, zoomin, from_page, to_page) callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) from timeit import default_timer as timer start = timer() self._layouts_paddle(zoomin) callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback) print("paddle layouts:", timer()-start) bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3) # is it English eng = 0 for b in bxs: if re.match(r"[a-zA-Z]", b["text"].strip()): eng += 1 if eng / len(bxs) > 0.8: eng = True else: eng = False # Merge vertically i = 0 while i + 1 < len(bxs): b = bxs[i] b_ = bxs[i + 1] if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]): bxs.pop(i) continue concatting_feats = [ b["text"].strip()[-1] in ",;:'\",、‘“;:", len(b["text"].strip())>1 and b["text"].strip()[-2] in ",;:'\",‘“、;:", b["text"].strip()[0] in "。;?!?”)),,、:", ] # features for not concating feats = [ b.get("layoutno",0) != b.get("layoutno",0), b["text"].strip()[-1] in "。?!?", eng and b["text"].strip()[-1] in ".!?", b["page_number"] == b_["page_number"] and b_["top"] - \ b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5, b["page_number"] < b_["page_number"] and abs( b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4 ] if any(feats) and not any(concatting_feats): i += 1 continue # merge up and down b["bottom"] = b_["bottom"] b["text"] += b_["text"] b["x0"] = min(b["x0"], b_["x0"]) b["x1"] = max(b["x1"], b_["x1"]) bxs.pop(i + 1) callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, "Page {}~{}: Text extraction finished".format(from_page, min(to_page, self.total_page)), callback) return [b["text"] + self._line_tag(b, zoomin) for b in bxs] def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): doc = { "docnm_kwd": filename, "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) } doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"]) pdf_parser = None sections = [] if re.search(r"\.docx?$", filename, re.IGNORECASE): for txt in Docx()(filename, binary): sections.append(txt) if re.search(r"\.pdf$", filename, re.IGNORECASE): pdf_parser = Pdf() for txt in pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback): sections.append(txt) if re.search(r"\.txt$", filename, re.IGNORECASE): txt = "" if binary:txt = binary.decode("utf-8") else: with open(filename, "r") as f: while True: l = f.readline() if not l:break txt += l sections = txt.split("\n") sections = [l for l in sections if l] # is it English eng = 0 for sec in sections: if re.match(r"[a-zA-Z]", sec.strip()): eng += 1 if eng / len(sections) > 0.8: eng = True else: eng = False # Remove 'Contents' part i = 0 while i < len(sections): if not re.match(r"(Contents|目录|目次)$", re.sub(r"( | |\u3000)+", "", sections[i].split("@@")[0])): i += 1 continue sections.pop(i) if i >= len(sections): break prefix = sections[i].strip()[:3] if not eng else " ".join(sections[i].strip().split(" ")[:2]) while not prefix: sections.pop(i) if i >= len(sections): break prefix = sections[i].strip()[:3] if not eng else " ".join(sections[i].strip().split(" ")[:2]) sections.pop(i) if i >= len(sections) or not prefix: break for j in range(i, min(i+128, len(sections))): if not re.match(prefix, sections[j]): continue for k in range(i, j):sections.pop(i) break bull = bullets_category(sections) projs = [len(BULLET_PATTERN[bull])] * len(sections) for i, sec in enumerate(sections): for j,p in enumerate(BULLET_PATTERN[bull]): if re.match(p, sec.strip()): projs[i] = j break readed = [0] * len(sections) cks = [] for pr in range(len(BULLET_PATTERN[bull])-1, 1, -1): for i in range(len(sections)): if readed[i] or projs[i] < pr: continue # find father and grand-father and grand...father p = projs[i] readed[i] = 1 ck = [sections[i]] for j in range(i-1, -1, -1): if projs[j] >= p:continue ck.append(sections[j]) readed[j] = 1 p = projs[j] if p == 0: break cks.append(ck[::-1]) res = [] # wrap up to es documents for ck in cks: print("\n-".join(ck)) ck = "\n".join(ck) d = copy.deepcopy(doc) if pdf_parser: d["image"] = pdf_parser.crop(ck) ck = pdf_parser.remove_tag(ck) d["content_ltks"] = huqie.qie(ck) d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) res.append(d) return res if __name__ == "__main__": import sys chunk(sys.argv[1])