# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import json import logging import os import hashlib import copy import re import sys import time import traceback from functools import partial from rag.utils import MINIO from api.db.db_models import close_connection from rag.settings import database_logger from rag.settings import cron_logger, DOC_MAXIMUM_SIZE from multiprocessing import Pool import numpy as np from elasticsearch_dsl import Q from multiprocessing.context import TimeoutError from api.db.services.task_service import TaskService from rag.utils import ELASTICSEARCH from timeit import default_timer as timer from rag.utils import rmSpace, findMaxTm from rag.nlp import search from io import BytesIO import pandas as pd from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one from api.db import LLMType, ParserType from api.db.services.document_service import DocumentService from api.db.services.llm_service import LLMBundle from api.utils.file_utils import get_project_base_directory from rag.utils.redis_conn import REDIS_CONN BATCH_SIZE = 64 FACTORY = { "general": naive, ParserType.NAIVE.value: naive, ParserType.PAPER.value: paper, ParserType.BOOK.value: book, ParserType.PRESENTATION.value: presentation, ParserType.MANUAL.value: manual, ParserType.LAWS.value: laws, ParserType.QA.value: qa, ParserType.TABLE.value: table, ParserType.RESUME.value: resume, ParserType.PICTURE.value: picture, ParserType.ONE.value: one, } def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."): if prog is not None and prog < 0: msg = "[ERROR]" + msg cancel = TaskService.do_cancel(task_id) if cancel: msg += " [Canceled]" prog = -1 if to_page > 0: if msg: msg = f"Page({from_page+1}~{to_page+1}): " + msg d = {"progress_msg": msg} if prog is not None: d["progress"] = prog try: TaskService.update_progress(task_id, d) except Exception as e: cron_logger.error("set_progress:({}), {}".format(task_id, str(e))) if cancel: sys.exit() def collect(comm, mod, tm): tasks = TaskService.get_tasks(tm, mod, comm) #print(tasks) if len(tasks) == 0: time.sleep(1) return pd.DataFrame() tasks = pd.DataFrame(tasks) mtm = tasks["update_time"].max() cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm)) return tasks def get_minio_binary(bucket, name): global MINIO if REDIS_CONN.is_alive(): try: r = REDIS_CONN.get("{}/{}".format(bucket, name)) if r: return r except Exception as e: cron_logger.warning("Get redis[EXCEPTION]:" + str(e)) return MINIO.get(bucket, name) def build(row): if row["size"] > DOC_MAXIMUM_SIZE: set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" % (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) return [] callback = partial( set_progress, row["id"], row["from_page"], row["to_page"]) chunker = FACTORY[row["parser_id"].lower()] pool = Pool(processes=1) try: st = timer() thr = pool.apply_async(get_minio_binary, args=(row["kb_id"], row["location"])) binary = thr.get(timeout=90) pool.terminate() cron_logger.info( "From minio({}) {}/{}".format(timer()-st, row["location"], row["name"])) cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"], to_page=row["to_page"], lang=row["language"], callback=callback, kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"]) cron_logger.info( "Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"])) except TimeoutError as e: callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.") cron_logger.error( "Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"])) return except Exception as e: if re.search("(No such file|not found)", str(e)): callback(-1, "Can not find file <%s>" % row["name"]) else: callback(-1, f"Internal server error: %s" % str(e).replace("'", "")) pool.terminate() traceback.print_exc() cron_logger.error( "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e))) return docs = [] doc = { "doc_id": row["doc_id"], "kb_id": [str(row["kb_id"])] } el = 0 for ck in cks: d = copy.deepcopy(doc) d.update(ck) md5 = hashlib.md5() md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")) d["_id"] = md5.hexdigest() d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] d["create_timestamp_flt"] = datetime.datetime.now().timestamp() if not d.get("image"): docs.append(d) continue output_buffer = BytesIO() if isinstance(d["image"], bytes): output_buffer = BytesIO(d["image"]) else: d["image"].save(output_buffer, format='JPEG') st = timer() MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) el += timer() - st d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) del d["image"] docs.append(d) cron_logger.info("MINIO PUT({}):{}".format(row["name"], el)) return docs def init_kb(row): idxnm = search.index_name(row["tenant_id"]) if ELASTICSEARCH.indexExist(idxnm): return return ELASTICSEARCH.createIdx(idxnm, json.load( open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r"))) def embedding(docs, mdl, parser_config={}, callback=None): batch_size = 32 tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [ re.sub(r"]{0,12})?>", " ", d["content_with_weight"]) for d in docs] tk_count = 0 if len(tts) == len(cnts): tts_ = np.array([]) for i in range(0, len(tts), batch_size): vts, c = mdl.encode(tts[i: i + batch_size]) if len(tts_) == 0: tts_ = vts else: tts_ = np.concatenate((tts_, vts), axis=0) tk_count += c callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="") tts = tts_ cnts_ = np.array([]) for i in range(0, len(cnts), batch_size): vts, c = mdl.encode(cnts[i: i + batch_size]) if len(cnts_) == 0: cnts_ = vts else: cnts_ = np.concatenate((cnts_, vts), axis=0) tk_count += c callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="") cnts = cnts_ title_w = float(parser_config.get("filename_embd_weight", 0.1)) vects = (title_w * tts + (1 - title_w) * cnts) if len(tts) == len(cnts) else cnts assert len(vects) == len(docs) for i, d in enumerate(docs): v = vects[i].tolist() d["q_%d_vec" % len(v)] = v return tk_count def main(comm, mod): tm_fnm = os.path.join( get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm") tm = findMaxTm(tm_fnm) rows = collect(comm, mod, tm) if len(rows) == 0: return tmf = open(tm_fnm, "a+") for _, r in rows.iterrows(): callback = partial(set_progress, r["id"], r["from_page"], r["to_page"]) #callback(random.random()/10., "Task has been received.") try: embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"]) except Exception as e: traceback.print_stack(e) callback(prog=-1, msg=str(e)) continue st = timer() cks = build(r) cron_logger.info("Build chunks({}): {}".format(r["name"], timer()-st)) if cks is None: continue if not cks: tmf.write(str(r["update_time"]) + "\n") callback(1., "No chunk! Done!") continue # TODO: exception handler ## set_progress(r["did"], -1, "ERROR: ") callback( msg="Finished slicing files(%d). Start to embedding the content." % len(cks)) st = timer() try: tk_count = embedding(cks, embd_mdl, r["parser_config"], callback) except Exception as e: callback(-1, "Embedding error:{}".format(str(e))) cron_logger.error(str(e)) tk_count = 0 cron_logger.info("Embedding elapsed({}): {}".format(r["name"], timer()-st)) callback(msg="Finished embedding({})! Start to build index!".format(timer()-st)) init_kb(r) chunk_count = len(set([c["_id"] for c in cks])) st = timer() es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"])) cron_logger.info("Indexing elapsed({}): {}".format(r["name"], timer()-st)) if es_r: callback(-1, "Index failure!") ELASTICSEARCH.deleteByQuery( Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"])) cron_logger.error(str(es_r)) else: if TaskService.do_cancel(r["id"]): ELASTICSEARCH.deleteByQuery( Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"])) continue callback(1., "Done!") DocumentService.increment_chunk_num( r["doc_id"], r["kb_id"], tk_count, chunk_count, 0) cron_logger.info( "Chunk doc({}), token({}), chunks({}), elapsed:{}".format( r["id"], tk_count, len(cks), timer()-st)) tmf.write(str(r["update_time"]) + "\n") tmf.close() if __name__ == "__main__": peewee_logger = logging.getLogger('peewee') peewee_logger.propagate = False peewee_logger.addHandler(database_logger.handlers[0]) peewee_logger.setLevel(database_logger.level) #from mpi4py import MPI #comm = MPI.COMM_WORLD while True: main(int(sys.argv[2]), int(sys.argv[1])) close_connection()