# -*- coding: utf-8 -*- import json import re import logging import copy import math from elasticsearch_dsl import Q, Search from rag.nlp import huqie, term_weight, synonym class EsQueryer: def __init__(self, es): self.tw = term_weight.Dealer() self.es = es self.syn = synonym.Dealer(None) self.flds = ["ask_tks^10", "ask_small_tks"] @staticmethod def subSpecialChar(line): return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip() @staticmethod def isChinese(line): arr = re.split(r"[ \t]+", line) if len(arr) <= 3: return True e = 0 for t in arr: if not re.match(r"[a-zA-Z]+$", t): e += 1 return e * 1. / len(arr) >= 0.7 @staticmethod def rmWWW(txt): txt = re.sub( r"是*(什么样的|哪家|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", "", txt) return re.sub( r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was|to)*", "", txt, re.IGNORECASE) def question(self, txt, tbl="qa", min_match="60%"): txt = re.sub( r"[ \r\n\t,,。??/`!!&]+", " ", huqie.tradi2simp( huqie.strQ2B( txt.lower()))).strip() txt = EsQueryer.rmWWW(txt) if not self.isChinese(txt): tks = [t for t in txt.split(" ") if t.strip()] q = tks for i in range(1, len(tks)): q.append("\"%s %s\"^2" % (tks[i - 1], tks[i])) if not q: q.append(txt) return Q("bool", must=Q("query_string", fields=self.flds, type="best_fields", query=" OR ".join(q), boost=1, minimum_should_match=min_match) ), txt.split(" ") def needQieqie(tk): if len(tk) < 4: return False if re.match(r"[0-9a-z\.\+#_\*-]+$", tk): return False return True qs, keywords = [], [] for tt in self.tw.split(txt): # .split(" "): if not tt: continue twts = self.tw.weights([tt]) syns = self.syn.lookup(tt) logging.info(json.dumps(twts, ensure_ascii=False)) tms = [] for tk, w in sorted(twts, key=lambda x: x[1] * -1): sm = huqie.qieqie(tk).split(" ") if needQieqie(tk) else [] sm = [ re.sub( r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+", "", m) for m in sm] sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1] sm = [m for m in sm if len(m) > 1] if len(sm) < 2: sm = [] keywords.append(re.sub(r"[ \\\"']+", "", tk)) tk_syns = self.syn.lookup(tk) tk = EsQueryer.subSpecialChar(tk) if tk.find(" ") > 0: tk = "\"%s\"" % tk if tk_syns: tk = f"({tk} %s)" % " ".join(tk_syns) if sm: tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % ( " ".join(sm), " ".join(sm)) tms.append((tk, w)) tms = " ".join([f"({t})^{w}" for t, w in tms]) if len(twts) > 1: tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts])) if re.match(r"[0-9a-z ]+$", tt): tms = f"(\"{tt}\" OR \"%s\")" % huqie.qie(tt) syns = " OR ".join( ["\"%s\"^0.7" % EsQueryer.subSpecialChar(huqie.qie(s)) for s in syns]) if syns: tms = f"({tms})^5 OR ({syns})^0.7" qs.append(tms) flds = copy.deepcopy(self.flds) mst = [] if qs: mst.append( Q("query_string", fields=flds, type="best_fields", query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match) ) return Q("bool", must=mst, ), keywords def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7): from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity import numpy as np sims = CosineSimilarity([avec], bvecs) def toDict(tks): d = {} if isinstance(tks, type("")): tks = tks.split(" ") for t, c in self.tw.weights(tks): if t not in d: d[t] = 0 d[t] += c return d atks = toDict(atks) btkss = [toDict(tks) for tks in btkss] tksim = [self.similarity(atks, btks) for btks in btkss] return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0] def similarity(self, qtwt, dtwt): if isinstance(dtwt, type("")): dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))} if isinstance(qtwt, type("")): qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))} s = 1e-9 for k, v in qtwt.items(): if k in dtwt: s += v# * dtwt[k] q = 1e-9 for k, v in qtwt.items(): q += v * v d = 1e-9 for k, v in dtwt.items(): d += v * v return s / q#math.sqrt(q) / math.sqrt(d)