# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from flask import request from api import settings from api.db import StatusEnum from api.db.services.dialog_service import DialogService from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.llm_service import TenantLLMService from api.db.services.user_service import TenantService from api.utils import get_uuid from api.utils.api_utils import get_error_data_result, token_required from api.utils.api_utils import get_result @manager.route('/chats', methods=['POST']) # noqa: F821 @token_required def create(tenant_id): req = request.json ids = req.get("dataset_ids") if not ids: return get_error_data_result(message="`dataset_ids` is required") for kb_id in ids: kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id) if not kbs: return get_error_data_result(f"You don't own the dataset {kb_id}") kbs = KnowledgebaseService.query(id=kb_id) kb = kbs[0] if kb.chunk_num == 0: return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file") kbs = KnowledgebaseService.get_by_ids(ids) embd_count = list(set([kb.embd_id for kb in kbs])) if len(embd_count) != 1: return get_result(message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR) req["kb_ids"] = ids # llm llm = req.get("llm") if llm: if "model_name" in llm: req["llm_id"] = llm.pop("model_name") if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"): return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist") req["llm_setting"] = req.pop("llm") e, tenant = TenantService.get_by_id(tenant_id) if not e: return get_error_data_result(message="Tenant not found!") # prompt prompt = req.get("prompt") key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"} key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"] if prompt: for new_key, old_key in key_mapping.items(): if old_key in prompt: prompt[new_key] = prompt.pop(old_key) for key in key_list: if key in prompt: req[key] = prompt.pop(key) req["prompt_config"] = req.pop("prompt") # init req["id"] = get_uuid() req["description"] = req.get("description", "A helpful Assistant") req["icon"] = req.get("avatar", "") req["top_n"] = req.get("top_n", 6) req["top_k"] = req.get("top_k", 1024) req["rerank_id"] = req.get("rerank_id", "") if req.get("rerank_id"): value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"] if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"): return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist") if not req.get("llm_id"): req["llm_id"] = tenant.llm_id if not req.get("name"): return get_error_data_result(message="`name` is required.") if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value): return get_error_data_result(message="Duplicated chat name in creating chat.") # tenant_id if req.get("tenant_id"): return get_error_data_result(message="`tenant_id` must not be provided.") req["tenant_id"] = tenant_id # prompt more parameter default_prompt = { "system": """You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base.""", "prologue": "Hi! I'm your assistant, what can I do for you?", "parameters": [ {"key": "knowledge", "optional": False} ], "empty_response": "Sorry! No relevant content was found in the knowledge base!", "quote": True, "tts": False, "refine_multiturn": True } key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"] if "prompt_config" not in req: req['prompt_config'] = {} for key in key_list_2: temp = req['prompt_config'].get(key) if (not temp and key == 'system') or (key not in req["prompt_config"]): req['prompt_config'][key] = default_prompt[key] for p in req['prompt_config']["parameters"]: if p["optional"]: continue if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0: return get_error_data_result( message="Parameter '{}' is not used".format(p["key"])) # save if not DialogService.save(**req): return get_error_data_result(message="Fail to new a chat!") # response e, res = DialogService.get_by_id(req["id"]) if not e: return get_error_data_result(message="Fail to new a chat!") res = res.to_json() renamed_dict = {} for key, value in res["prompt_config"].items(): new_key = key_mapping.get(key, key) renamed_dict[new_key] = value res["prompt"] = renamed_dict del res["prompt_config"] new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res['rerank_id']} res["prompt"].update(new_dict) for key in key_list: del res[key] res["llm"] = res.pop("llm_setting") res["llm"]["model_name"] = res.pop("llm_id") del res["kb_ids"] res["dataset_ids"] = req["dataset_ids"] res["avatar"] = res.pop("icon") return get_result(data=res) @manager.route('/chats/', methods=['PUT']) # noqa: F821 @token_required def update(tenant_id, chat_id): if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value): return get_error_data_result(message='You do not own the chat') req = request.json ids = req.get("dataset_ids") if "show_quotation" in req: req["do_refer"] = req.pop("show_quotation") if "dataset_ids" in req: if not ids: return get_error_data_result("`dataset_ids` can't be empty") if ids: for kb_id in ids: kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id) if not kbs: return get_error_data_result(f"You don't own the dataset {kb_id}") kbs = KnowledgebaseService.query(id=kb_id) kb = kbs[0] if kb.chunk_num == 0: return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file") kbs = KnowledgebaseService.get_by_ids(ids) embd_count = list(set([kb.embd_id for kb in kbs])) if len(embd_count) != 1: return get_result( message='Datasets use different embedding models."', code=settings.RetCode.AUTHENTICATION_ERROR) req["kb_ids"] = ids llm = req.get("llm") if llm: if "model_name" in llm: req["llm_id"] = llm.pop("model_name") if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"): return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist") req["llm_setting"] = req.pop("llm") e, tenant = TenantService.get_by_id(tenant_id) if not e: return get_error_data_result(message="Tenant not found!") # prompt prompt = req.get("prompt") key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"} key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"] if prompt: for new_key, old_key in key_mapping.items(): if old_key in prompt: prompt[new_key] = prompt.pop(old_key) for key in key_list: if key in prompt: req[key] = prompt.pop(key) req["prompt_config"] = req.pop("prompt") e, res = DialogService.get_by_id(chat_id) res = res.to_json() if req.get("rerank_id"): value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"] if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id, llm_name=req.get("rerank_id"), model_type="rerank"): return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist") if "name" in req: if not req.get("name"): return get_error_data_result(message="`name` is not empty.") if req["name"].lower() != res["name"].lower() \ and len( DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0: return get_error_data_result(message="Duplicated chat name in updating dataset.") if "prompt_config" in req: res["prompt_config"].update(req["prompt_config"]) for p in res["prompt_config"]["parameters"]: if p["optional"]: continue if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0: return get_error_data_result(message="Parameter '{}' is not used".format(p["key"])) if "llm_setting" in req: res["llm_setting"].update(req["llm_setting"]) req["prompt_config"] = res["prompt_config"] req["llm_setting"] = res["llm_setting"] # avatar if "avatar" in req: req["icon"] = req.pop("avatar") if "dataset_ids" in req: req.pop("dataset_ids") if not DialogService.update_by_id(chat_id, req): return get_error_data_result(message="Chat not found!") return get_result() @manager.route('/chats', methods=['DELETE']) # noqa: F821 @token_required def delete(tenant_id): req = request.json if not req: ids = None else: ids = req.get("ids") if not ids: id_list = [] dias = DialogService.query(tenant_id=tenant_id, status=StatusEnum.VALID.value) for dia in dias: id_list.append(dia.id) else: id_list = ids for id in id_list: if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value): return get_error_data_result(message=f"You don't own the chat {id}") temp_dict = {"status": StatusEnum.INVALID.value} DialogService.update_by_id(id, temp_dict) return get_result() @manager.route('/chats', methods=['GET']) # noqa: F821 @token_required def list_chat(tenant_id): id = request.args.get("id") name = request.args.get("name") if id or name: chat = DialogService.query(id=id, name=name, status=StatusEnum.VALID.value, tenant_id=tenant_id) if not chat: return get_error_data_result(message="The chat doesn't exist") page_number = int(request.args.get("page", 1)) items_per_page = int(request.args.get("page_size", 30)) orderby = request.args.get("orderby", "create_time") if request.args.get("desc") == "False" or request.args.get("desc") == "false": desc = False else: desc = True chats = DialogService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, name) if not chats: return get_result(data=[]) list_assts = [] key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight", "do_refer": "show_quotation"} key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"] for res in chats: renamed_dict = {} for key, value in res["prompt_config"].items(): new_key = key_mapping.get(key, key) renamed_dict[new_key] = value res["prompt"] = renamed_dict del res["prompt_config"] new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res['rerank_id']} res["prompt"].update(new_dict) for key in key_list: del res[key] res["llm"] = res.pop("llm_setting") res["llm"]["model_name"] = res.pop("llm_id") kb_list = [] for kb_id in res["kb_ids"]: kb = KnowledgebaseService.query(id=kb_id) if not kb: return get_error_data_result(message=f"Don't exist the kb {kb_id}") kb_list.append(kb[0].to_json()) del res["kb_ids"] res["datasets"] = kb_list res["avatar"] = res.pop("icon") list_assts.append(res) return get_result(data=list_assts)