import re from nltk import word_tokenize from rag.nlp import stemmer, huqie def callback__(progress, msg, func): if not func :return func(progress, msg) BULLET_PATTERN = [[ r"第[零一二三四五六七八九十百]+编", r"第[零一二三四五六七八九十百]+章", r"第[零一二三四五六七八九十百]+节", r"第[零一二三四五六七八九十百]+条", r"[\((][零一二三四五六七八九十百]+[\))]", ], [ r"[0-9]{,3}[\. 、]", r"[0-9]{,2}\.[0-9]{,2}", r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", ], [ r"[零一二三四五六七八九十百]+[ 、]", r"[\((][零一二三四五六七八九十百]+[\))]", r"[\((][0-9]{,2}[\))]", ] ,[ r"PART (ONE|TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|TEN)", r"Chapter (I+V?|VI*|XI|IX|X)", r"Section [0-9]+", r"Article [0-9]+" ] ] def bullets_category(sections): global BULLET_PATTERN hits = [0] * len(BULLET_PATTERN) for i, pro in enumerate(BULLET_PATTERN): for sec in sections: for p in pro: if re.match(p, sec): hits[i] += 1 break maxium = 0 res = -1 for i,h in enumerate(hits): if h <= maxium:continue res = i maxium = h return res def is_english(texts): eng = 0 for t in texts: if re.match(r"[a-zA-Z]", t.strip()): eng += 1 if eng / len(texts) > 0.8: return True return False def tokenize(d, t, eng): d["content_with_weight"] = t if eng: t = re.sub(r"([a-z])-([a-z])", r"\1\2", t) d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)]) else: d["content_ltks"] = huqie.qie(t) d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])