# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from beartype import BeartypeConf # from beartype.claw import beartype_all # <-- you didn't sign up for this # beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code import logging import sys import os from api.utils.log_utils import initRootLogger CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1] CONSUMER_NAME = "task_executor_" + CONSUMER_NO LOG_LEVELS = os.environ.get("LOG_LEVELS", "") initRootLogger(CONSUMER_NAME, LOG_LEVELS) from datetime import datetime import json import os import hashlib import copy import re import sys import time import threading from functools import partial from io import BytesIO from multiprocessing.context import TimeoutError from timeit import default_timer as timer import tracemalloc import numpy as np from api.db import LLMType, ParserType from api.db.services.dialog_service import keyword_extraction, question_proposal from api.db.services.document_service import DocumentService from api.db.services.llm_service import LLMBundle from api.db.services.task_service import TaskService from api.db.services.file2document_service import File2DocumentService from api import settings from api.versions import get_ragflow_version from api.db.db_models import close_connection from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \ knowledge_graph, email from rag.nlp import search, rag_tokenizer from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME, print_rag_settings from rag.utils import rmSpace, num_tokens_from_string from rag.utils.redis_conn import REDIS_CONN, Payload from rag.utils.storage_factory import STORAGE_IMPL BATCH_SIZE = 64 FACTORY = { "general": naive, ParserType.NAIVE.value: naive, ParserType.PAPER.value: paper, ParserType.BOOK.value: book, ParserType.PRESENTATION.value: presentation, ParserType.MANUAL.value: manual, ParserType.LAWS.value: laws, ParserType.QA.value: qa, ParserType.TABLE.value: table, ParserType.RESUME.value: resume, ParserType.PICTURE.value: picture, ParserType.ONE.value: one, ParserType.AUDIO.value: audio, ParserType.EMAIL.value: email, ParserType.KG.value: knowledge_graph } CONSUMER_NAME = "task_consumer_" + CONSUMER_NO PAYLOAD: Payload | None = None BOOT_AT = datetime.now().isoformat() PENDING_TASKS = 0 LAG_TASKS = 0 mt_lock = threading.Lock() DONE_TASKS = 0 FAILED_TASKS = 0 CURRENT_TASK = None def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."): global PAYLOAD if prog is not None and prog < 0: msg = "[ERROR]" + msg cancel = TaskService.do_cancel(task_id) if cancel: msg += " [Canceled]" prog = -1 if to_page > 0: if msg: msg = f"Page({from_page + 1}~{to_page + 1}): " + msg d = {"progress_msg": msg} if prog is not None: d["progress"] = prog try: logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}") TaskService.update_progress(task_id, d) except Exception: logging.exception(f"set_progress({task_id}) got exception") close_connection() if cancel: if PAYLOAD: PAYLOAD.ack() PAYLOAD = None os._exit(0) def collect(): global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS try: PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker") if not PAYLOAD: PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME) if not PAYLOAD: time.sleep(1) return None except Exception: logging.exception("Get task event from queue exception") return None msg = PAYLOAD.get_message() if not msg: return None if TaskService.do_cancel(msg["id"]): with mt_lock: DONE_TASKS += 1 logging.info("Task {} has been canceled.".format(msg["id"])) return None task = TaskService.get_task(msg["id"]) if not task: with mt_lock: DONE_TASKS += 1 logging.warning("{} empty task!".format(msg["id"])) return None if msg.get("type", "") == "raptor": task["task_type"] = "raptor" return task def get_storage_binary(bucket, name): return STORAGE_IMPL.get(bucket, name) def build_chunks(task, progress_callback): if task["size"] > DOC_MAXIMUM_SIZE: set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" % (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) return [] chunker = FACTORY[task["parser_id"].lower()] try: st = timer() bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"]) binary = get_storage_binary(bucket, name) logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"])) except TimeoutError: progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.") logging.exception("Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"])) raise except Exception as e: if re.search("(No such file|not found)", str(e)): progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"]) else: progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", "")) logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"])) raise try: cks = chunker.chunk(task["name"], binary=binary, from_page=task["from_page"], to_page=task["to_page"], lang=task["language"], callback=progress_callback, kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"]) logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"])) except Exception as e: progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", "")) logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"])) raise docs = [] doc = { "doc_id": task["doc_id"], "kb_id": str(task["kb_id"]) } if task["pagerank"]: doc["pagerank_fea"] = int(task["pagerank"]) el = 0 for ck in cks: d = copy.deepcopy(doc) d.update(ck) md5 = hashlib.md5() md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")) d["id"] = md5.hexdigest() d["create_time"] = str(datetime.now()).replace("T", " ")[:19] d["create_timestamp_flt"] = datetime.now().timestamp() if not d.get("image"): _ = d.pop("image", None) d["img_id"] = "" d["page_num_list"] = json.dumps([]) d["position_list"] = json.dumps([]) d["top_list"] = json.dumps([]) docs.append(d) continue try: output_buffer = BytesIO() if isinstance(d["image"], bytes): output_buffer = BytesIO(d["image"]) else: d["image"].save(output_buffer, format='JPEG') st = timer() STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()) el += timer() - st except Exception: logging.exception("Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["_id"])) raise d["img_id"] = "{}-{}".format(task["kb_id"], d["id"]) del d["image"] docs.append(d) logging.info("MINIO PUT({}):{}".format(task["name"], el)) if task["parser_config"].get("auto_keywords", 0): st = timer() progress_callback(msg="Start to generate keywords for every chunk ...") chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"]) for d in docs: d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_keywords"]).split(",") d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"])) progress_callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st)) if task["parser_config"].get("auto_questions", 0): st = timer() progress_callback(msg="Start to generate questions for every chunk ...") chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"]) for d in docs: qst = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"]) d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"] qst = rag_tokenizer.tokenize(qst) if "content_ltks" in d: d["content_ltks"] += " " + qst if "content_sm_ltks" in d: d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst) progress_callback(msg="Question generation completed in {:.2f}s".format(timer() - st)) return docs def init_kb(row, vector_size: int): idxnm = search.index_name(row["tenant_id"]) return settings.docStoreConn.createIdx(idxnm, row["kb_id"], vector_size) def embedding(docs, mdl, parser_config=None, callback=None): if parser_config is None: parser_config = {} batch_size = 32 tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [ re.sub(r"]{0,12})?>", " ", d["content_with_weight"]) for d in docs] tk_count = 0 if len(tts) == len(cnts): tts_ = np.array([]) for i in range(0, len(tts), batch_size): vts, c = mdl.encode(tts[i: i + batch_size]) if len(tts_) == 0: tts_ = vts else: tts_ = np.concatenate((tts_, vts), axis=0) tk_count += c callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="") tts = tts_ cnts_ = np.array([]) for i in range(0, len(cnts), batch_size): vts, c = mdl.encode(cnts[i: i + batch_size]) if len(cnts_) == 0: cnts_ = vts else: cnts_ = np.concatenate((cnts_, vts), axis=0) tk_count += c callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="") cnts = cnts_ title_w = float(parser_config.get("filename_embd_weight", 0.1)) vects = (title_w * tts + (1 - title_w) * cnts) if len(tts) == len(cnts) else cnts assert len(vects) == len(docs) vector_size = 0 for i, d in enumerate(docs): v = vects[i].tolist() vector_size = len(v) d["q_%d_vec" % len(v)] = v return tk_count, vector_size def run_raptor(row, chat_mdl, embd_mdl, callback=None): vts, _ = embd_mdl.encode(["ok"]) vector_size = len(vts[0]) vctr_nm = "q_%d_vec" % vector_size chunks = [] for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])], fields=["content_with_weight", vctr_nm]): chunks.append((d["content_with_weight"], np.array(d[vctr_nm]))) raptor = Raptor( row["parser_config"]["raptor"].get("max_cluster", 64), chat_mdl, embd_mdl, row["parser_config"]["raptor"]["prompt"], row["parser_config"]["raptor"]["max_token"], row["parser_config"]["raptor"]["threshold"] ) original_length = len(chunks) chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback) doc = { "doc_id": row["doc_id"], "kb_id": [str(row["kb_id"])], "docnm_kwd": row["name"], "title_tks": rag_tokenizer.tokenize(row["name"]) } if row["pagerank"]: doc["pagerank_fea"] = int(row["pagerank"]) res = [] tk_count = 0 for content, vctr in chunks[original_length:]: d = copy.deepcopy(doc) md5 = hashlib.md5() md5.update((content + str(d["doc_id"])).encode("utf-8")) d["id"] = md5.hexdigest() d["create_time"] = str(datetime.now()).replace("T", " ")[:19] d["create_timestamp_flt"] = datetime.now().timestamp() d[vctr_nm] = vctr.tolist() d["content_with_weight"] = content d["content_ltks"] = rag_tokenizer.tokenize(content) d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) res.append(d) tk_count += num_tokens_from_string(content) return res, tk_count, vector_size def do_handle_task(task): task_id = task["id"] task_from_page = task["from_page"] task_to_page = task["to_page"] task_tenant_id = task["tenant_id"] task_embedding_id = task["embd_id"] task_language = task["language"] task_llm_id = task["llm_id"] task_dataset_id = task["kb_id"] task_doc_id = task["doc_id"] task_document_name = task["name"] task_parser_config = task["parser_config"] # prepare the progress callback function progress_callback = partial(set_progress, task_id, task_from_page, task_to_page) try: # bind embedding model embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language) except Exception as e: error_message = f'Fail to bind embedding model: {str(e)}' progress_callback(-1, msg=error_message) logging.exception(error_message) raise # Either using RAPTOR or Standard chunking methods if task.get("task_type", "") == "raptor": try: # bind LLM for raptor chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language) # run RAPTOR chunks, token_count, vector_size = run_raptor(task, chat_model, embedding_model, progress_callback) except Exception as e: error_message = f'Fail to bind LLM used by RAPTOR: {str(e)}' progress_callback(-1, msg=error_message) logging.exception(error_message) raise else: # Standard chunking methods start_ts = timer() chunks = build_chunks(task, progress_callback) logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts)) if chunks is None: return if not chunks: progress_callback(1., msg=f"No chunk built from {task_document_name}") return # TODO: exception handler ## set_progress(task["did"], -1, "ERROR: ") progress_callback(msg="Generate {} chunks".format(len(chunks))) start_ts = timer() try: token_count, vector_size = embedding(chunks, embedding_model, task_parser_config, progress_callback) except Exception as e: error_message = "Generate embedding error:{}".format(str(e)) progress_callback(-1, error_message) logging.exception(error_message) token_count = 0 raise progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts) logging.info(progress_message) progress_callback(msg=progress_message) # logging.info(f"task_executor init_kb index {search.index_name(task_tenant_id)} embedding_model {embedding_model.llm_name} vector length {vector_size}") init_kb(task, vector_size) chunk_count = len(set([chunk["id"] for chunk in chunks])) start_ts = timer() doc_store_result = "" es_bulk_size = 4 for b in range(0, len(chunks), es_bulk_size): doc_store_result = settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(task_tenant_id), task_dataset_id) if b % 128 == 0: progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="") logging.info("Indexing {} elapsed: {:.2f}".format(task_document_name, timer() - start_ts)) if doc_store_result: error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!" progress_callback(-1, msg=error_message) settings.docStoreConn.delete({"doc_id": task_doc_id}, search.index_name(task_tenant_id), task_dataset_id) logging.error(error_message) raise Exception(error_message) if TaskService.do_cancel(task_id): settings.docStoreConn.delete({"doc_id": task_doc_id}, search.index_name(task_tenant_id), task_dataset_id) return DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0) time_cost = timer() - start_ts progress_callback(prog=1.0, msg="Done ({:.2f}s)".format(time_cost)) logging.info("Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(task_id, token_count, len(chunks), time_cost)) def handle_task(): global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK task = collect() if task: try: logging.info(f"handle_task begin for task {json.dumps(task)}") with mt_lock: CURRENT_TASK = copy.deepcopy(task) do_handle_task(task) with mt_lock: DONE_TASKS += 1 CURRENT_TASK = None logging.info(f"handle_task done for task {json.dumps(task)}") except Exception: with mt_lock: FAILED_TASKS += 1 CURRENT_TASK = None logging.exception(f"handle_task got exception for task {json.dumps(task)}") if PAYLOAD: PAYLOAD.ack() PAYLOAD = None def report_status(): global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME) while True: try: now = datetime.now() group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker") if group_info is not None: PENDING_TASKS = int(group_info["pending"]) LAG_TASKS = int(group_info["lag"]) with mt_lock: heartbeat = json.dumps({ "name": CONSUMER_NAME, "now": now.isoformat(), "boot_at": BOOT_AT, "pending": PENDING_TASKS, "lag": LAG_TASKS, "done": DONE_TASKS, "failed": FAILED_TASKS, "current": CURRENT_TASK, }) REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp()) logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}") expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30) if expired > 0: REDIS_CONN.zpopmin(CONSUMER_NAME, expired) except Exception: logging.exception("report_status got exception") time.sleep(30) def analyze_heap(snapshot1: tracemalloc.Snapshot, snapshot2: tracemalloc.Snapshot, snapshot_id: int, dump_full: bool): msg = "" if dump_full: stats2 = snapshot2.statistics('lineno') msg += f"{CONSUMER_NAME} memory usage of snapshot {snapshot_id}:\n" for stat in stats2[:10]: msg += f"{stat}\n" stats1_vs_2 = snapshot2.compare_to(snapshot1, 'lineno') msg += f"{CONSUMER_NAME} memory usage increase from snapshot {snapshot_id - 1} to snapshot {snapshot_id}:\n" for stat in stats1_vs_2[:10]: msg += f"{stat}\n" msg += f"{CONSUMER_NAME} detailed traceback for the top memory consumers:\n" for stat in stats1_vs_2[:3]: msg += '\n'.join(stat.traceback.format()) logging.info(msg) def main(): logging.info(r""" ______ __ ______ __ /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____ / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/ / / / /_/ (__ ) ,< / /____> 0: if TRACE_MALLOC_FULL < TRACE_MALLOC_DELTA: TRACE_MALLOC_FULL = TRACE_MALLOC_DELTA tracemalloc.start() snapshot1 = tracemalloc.take_snapshot() while True: handle_task() num_tasks = DONE_TASKS + FAILED_TASKS if TRACE_MALLOC_DELTA > 0 and num_tasks > 0 and num_tasks % TRACE_MALLOC_DELTA == 0: snapshot2 = tracemalloc.take_snapshot() analyze_heap(snapshot1, snapshot2, int(num_tasks / TRACE_MALLOC_DELTA), num_tasks % TRACE_MALLOC_FULL == 0) snapshot1 = snapshot2 snapshot2 = None if __name__ == "__main__": main()