# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Optional from huggingface_hub import snapshot_download from zhipuai import ZhipuAI import os from abc import ABC from ollama import Client import dashscope from openai import OpenAI from FlagEmbedding import FlagModel import torch import numpy as np from api.utils.file_utils import get_project_base_directory, get_home_cache_dir from rag.utils import num_tokens_from_string, truncate try: flag_model = FlagModel(os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"), query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available()) except Exception as e: model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"), local_dir_use_symlinks=False) flag_model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available()) class Base(ABC): def __init__(self, key, model_name): pass def encode(self, texts: list, batch_size=32): raise NotImplementedError("Please implement encode method!") def encode_queries(self, text: str): raise NotImplementedError("Please implement encode method!") class DefaultEmbedding(Base): def __init__(self, *args, **kwargs): """ If you have trouble downloading HuggingFace models, -_^ this might help!! For Linux: export HF_ENDPOINT=https://hf-mirror.com For Windows: Good luck ^_- """ self.model = flag_model def encode(self, texts: list, batch_size=32): texts = [truncate(t, 2048) for t in texts] token_count = 0 for t in texts: token_count += num_tokens_from_string(t) res = [] for i in range(0, len(texts), batch_size): res.extend(self.model.encode(texts[i:i + batch_size]).tolist()) return np.array(res), token_count def encode_queries(self, text: str): token_count = num_tokens_from_string(text) return self.model.encode_queries([text]).tolist()[0], token_count class OpenAIEmbed(Base): def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"): if not base_url: base_url = "https://api.openai.com/v1" self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name def encode(self, texts: list, batch_size=32): texts = [truncate(t, 8196) for t in texts] res = self.client.embeddings.create(input=texts, model=self.model_name) return np.array([d.embedding for d in res.data] ), res.usage.total_tokens def encode_queries(self, text): res = self.client.embeddings.create(input=[truncate(text, 8196)], model=self.model_name) return np.array(res.data[0].embedding), res.usage.total_tokens class QWenEmbed(Base): def __init__(self, key, model_name="text_embedding_v2", **kwargs): dashscope.api_key = key self.model_name = model_name def encode(self, texts: list, batch_size=10): import dashscope res = [] token_count = 0 texts = [truncate(t, 2048) for t in texts] for i in range(0, len(texts), batch_size): resp = dashscope.TextEmbedding.call( model=self.model_name, input=texts[i:i + batch_size], text_type="document" ) embds = [[] for _ in range(len(resp["output"]["embeddings"]))] for e in resp["output"]["embeddings"]: embds[e["text_index"]] = e["embedding"] res.extend(embds) token_count += resp["usage"]["total_tokens"] return np.array(res), token_count def encode_queries(self, text): resp = dashscope.TextEmbedding.call( model=self.model_name, input=text[:2048], text_type="query" ) return np.array(resp["output"]["embeddings"][0] ["embedding"]), resp["usage"]["total_tokens"] class ZhipuEmbed(Base): def __init__(self, key, model_name="embedding-2", **kwargs): self.client = ZhipuAI(api_key=key) self.model_name = model_name def encode(self, texts: list, batch_size=32): arr = [] tks_num = 0 for txt in texts: res = self.client.embeddings.create(input=txt, model=self.model_name) arr.append(res.data[0].embedding) tks_num += res.usage.total_tokens return np.array(arr), tks_num def encode_queries(self, text): res = self.client.embeddings.create(input=text, model=self.model_name) return np.array(res.data[0].embedding), res.usage.total_tokens class OllamaEmbed(Base): def __init__(self, key, model_name, **kwargs): self.client = Client(host=kwargs["base_url"]) self.model_name = model_name def encode(self, texts: list, batch_size=32): arr = [] tks_num = 0 for txt in texts: res = self.client.embeddings(prompt=txt, model=self.model_name) arr.append(res["embedding"]) tks_num += 128 return np.array(arr), tks_num def encode_queries(self, text): res = self.client.embeddings(prompt=text, model=self.model_name) return np.array(res["embedding"]), 128 class FastEmbed(Base): def __init__( self, key: Optional[str] = None, model_name: str = "BAAI/bge-small-en-v1.5", cache_dir: Optional[str] = None, threads: Optional[int] = None, **kwargs, ): from fastembed import TextEmbedding self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs) def encode(self, texts: list, batch_size=32): # Using the internal tokenizer to encode the texts and get the total # number of tokens encodings = self._model.model.tokenizer.encode_batch(texts) total_tokens = sum(len(e) for e in encodings) embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)] return np.array(embeddings), total_tokens def encode_queries(self, text: str): # Using the internal tokenizer to encode the texts and get the total # number of tokens encoding = self._model.model.tokenizer.encode(text) embedding = next(self._model.query_embed(text)).tolist() return np.array(embedding), len(encoding.ids) class XinferenceEmbed(Base): def __init__(self, key, model_name="", base_url=""): self.client = OpenAI(api_key="xxx", base_url=base_url) self.model_name = model_name def encode(self, texts: list, batch_size=32): res = self.client.embeddings.create(input=texts, model=self.model_name) return np.array([d.embedding for d in res.data] ), res.usage.total_tokens def encode_queries(self, text): res = self.client.embeddings.create(input=[text], model=self.model_name) return np.array(res.data[0].embedding), res.usage.total_tokens class YoudaoEmbed(Base): _client = None def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs): from BCEmbedding import EmbeddingModel as qanthing if not YoudaoEmbed._client: try: print("LOADING BCE...") YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join( get_home_cache_dir(), "bce-embedding-base_v1")) except Exception as e: YoudaoEmbed._client = qanthing( model_name_or_path=model_name.replace( "maidalun1020", "InfiniFlow")) def encode(self, texts: list, batch_size=10): res = [] token_count = 0 for t in texts: token_count += num_tokens_from_string(t) for i in range(0, len(texts), batch_size): embds = YoudaoEmbed._client.encode(texts[i:i + batch_size]) res.extend(embds) return np.array(res), token_count def encode_queries(self, text): embds = YoudaoEmbed._client.encode([text]) return np.array(embds[0]), num_tokens_from_string(text)