writinwaters commited on
Commit
fb9c758
·
1 Parent(s): 2332381

Added some debugging FAQs (#413)

Browse files

### What problem does this PR solve?

### Type of change

- [x] Documentation Update

Files changed (2) hide show
  1. README.md +2 -2
  2. docs/faq.md +42 -1
README.md CHANGED
@@ -56,7 +56,7 @@
56
  ## 📌 Latest Features
57
 
58
  - 2024-04-16 Add an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding).
59
- - 2024-04-16 Add [FastEmbed](https://github.com/qdrant/fastembed) is designed for light and speeding embedding.
60
  - 2024-04-11 Support [Xinference](./docs/xinference.md) for local LLM deployment.
61
  - 2024-04-10 Add a new layout recognization model for analyzing Laws documentation.
62
  - 2024-04-08 Support [Ollama](./docs/ollama.md) for local LLM deployment.
@@ -139,7 +139,7 @@
139
  ```
140
 
141
  5. In your web browser, enter the IP address of your server and log in to RAGFlow.
142
- > In the given scenario, you only need to enter `http://IP_OF_YOUR_MACHINE` (sans port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
143
  6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
144
 
145
  > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
 
56
  ## 📌 Latest Features
57
 
58
  - 2024-04-16 Add an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding).
59
+ - 2024-04-16 Add [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
60
  - 2024-04-11 Support [Xinference](./docs/xinference.md) for local LLM deployment.
61
  - 2024-04-10 Add a new layout recognization model for analyzing Laws documentation.
62
  - 2024-04-08 Support [Ollama](./docs/ollama.md) for local LLM deployment.
 
139
  ```
140
 
141
  5. In your web browser, enter the IP address of your server and log in to RAGFlow.
142
+ > In the given scenario, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
143
  6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
144
 
145
  > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
docs/faq.md CHANGED
@@ -96,6 +96,8 @@ Parsing requests have to wait in queue due to limited server resources. We are c
96
 
97
  ### Why does my document parsing stall at under one percent?
98
 
 
 
99
  If your RAGFlow is deployed *locally*, try the following:
100
 
101
  1. Check the log of your RAGFlow server to see if it is running properly:
@@ -105,6 +107,16 @@ docker logs -f ragflow-server
105
  2. Check if the **tast_executor.py** process exist.
106
  3. Check if your RAGFlow server can access hf-mirror.com or huggingface.com.
107
 
 
 
 
 
 
 
 
 
 
 
108
  ### `Index failure`
109
 
110
  An index failure usually indicates an unavailable Elasticsearch service.
@@ -165,7 +177,7 @@ Your IP address or port number may be incorrect. If you are using the default co
165
 
166
  A correct Ollama IP address and port is crucial to adding models to Ollama:
167
 
168
- - If you are on demo.ragflow.io, ensure that the server hosting Ollama has a publicly accessible IP address. 127.0.0.1 is not an accessible IP address.
169
  - If you deploy RAGFlow locally, ensure that Ollama and RAGFlow are in the same LAN and can comunicate with each other.
170
 
171
  ### Do you offer examples of using deepdoc to parse PDF or other files?
@@ -191,3 +203,32 @@ docker compose up ragflow -d
191
  ```
192
  *Now you should be able to upload files of sizes less than 100MB.*
193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  ### Why does my document parsing stall at under one percent?
98
 
99
+ ![stall](https://github.com/infiniflow/ragflow/assets/93570324/3589cc25-c733-47d5-bbfc-fedb74a3da50)
100
+
101
  If your RAGFlow is deployed *locally*, try the following:
102
 
103
  1. Check the log of your RAGFlow server to see if it is running properly:
 
107
  2. Check if the **tast_executor.py** process exist.
108
  3. Check if your RAGFlow server can access hf-mirror.com or huggingface.com.
109
 
110
+ ### `MaxRetryError: HTTPSConnectionPool(host='hf-mirror.com', port=443)`
111
+
112
+ This error suggests that you do not have Internet access or are unable to connect to hf-mirror.com. Try the following:
113
+
114
+ 1. Manually download the resource files from [huggingface.co/InfiniFlow/deepdoc](https://huggingface.co/InfiniFlow/deepdoc) to your local folder **~/deepdoc**.
115
+ 2. Add a volumes to **docker-compose.yml**, for example:
116
+ ```
117
+ - ~/deepdoc:/ragflow/rag/res/deepdoc
118
+ ```
119
+
120
  ### `Index failure`
121
 
122
  An index failure usually indicates an unavailable Elasticsearch service.
 
177
 
178
  A correct Ollama IP address and port is crucial to adding models to Ollama:
179
 
180
+ - If you are on demo.ragflow.io, ensure that the server hosting Ollama has a publicly accessible IP address.Note that 127.0.0.1 is not a publicly accessible IP address.
181
  - If you deploy RAGFlow locally, ensure that Ollama and RAGFlow are in the same LAN and can comunicate with each other.
182
 
183
  ### Do you offer examples of using deepdoc to parse PDF or other files?
 
203
  ```
204
  *Now you should be able to upload files of sizes less than 100MB.*
205
 
206
+ ### `Table 'rag_flow.document' doesn't exist`
207
+
208
+ This exception occurs when starting up the RAGFlow server. Try the following:
209
+
210
+ 1. Prolong the sleep time: Go to **docker/entrypoint.sh**, locate line 26, and replace `sleep 60` with `sleep 280`.
211
+ 2. Go to **docker/docker-compose.yml**, add the following after line 109:
212
+ ```
213
+ ./entrypoint.sh:/ragflow/entrypoint.sh
214
+ ```
215
+ 3. Change directory:
216
+ ```bash
217
+ cd docker
218
+ ```
219
+ 4. Stop the RAGFlow server:
220
+ ```bash
221
+ docker compose stop
222
+ ```
223
+ 5. Restart up the RAGFlow server:
224
+ ```bash
225
+ docker compose up
226
+ ```
227
+
228
+ ### `hint : 102 Fail to access model Connection error`
229
+
230
+ ![hint102](https://github.com/infiniflow/ragflow/assets/93570324/6633d892-b4f8-49b5-9a0a-37a0a8fba3d2)
231
+
232
+ 1. Ensure that the RAGFlow server can access the base URL.
233
+ 2. Do not forget to append **/v1/** to **http://IP:port**:
234
+ **http://IP:port/v1/**