KevinHuSh
commited on
Commit
·
3772f42
1
Parent(s):
aa396c5
add ocr and recognizer demo, update README (#74)
Browse files- api/apps/conversation_app.py +2 -2
- api/utils/file_utils.py +6 -0
- deepdoc/README.md +55 -7
- deepdoc/vision/__init__.py +45 -0
- deepdoc/vision/layout_recognizer.py +19 -7
- deepdoc/vision/recognizer.py +131 -29
- deepdoc/vision/t_ocr.py +47 -0
- deepdoc/vision/t_recognizer.py +173 -0
- deepdoc/vision/table_structure_recognizer.py +47 -28
api/apps/conversation_app.py
CHANGED
@@ -58,7 +58,7 @@ def set_conversation():
|
|
58 |
conv = {
|
59 |
"id": get_uuid(),
|
60 |
"dialog_id": req["dialog_id"],
|
61 |
-
"name": "New conversation",
|
62 |
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
|
63 |
}
|
64 |
ConversationService.save(**conv)
|
@@ -102,7 +102,7 @@ def rm():
|
|
102 |
def list_convsersation():
|
103 |
dialog_id = request.args["dialog_id"]
|
104 |
try:
|
105 |
-
convs = ConversationService.query(dialog_id=dialog_id)
|
106 |
convs = [d.to_dict() for d in convs]
|
107 |
return get_json_result(data=convs)
|
108 |
except Exception as e:
|
|
|
58 |
conv = {
|
59 |
"id": get_uuid(),
|
60 |
"dialog_id": req["dialog_id"],
|
61 |
+
"name": req.get("name", "New conversation"),
|
62 |
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
|
63 |
}
|
64 |
ConversationService.save(**conv)
|
|
|
102 |
def list_convsersation():
|
103 |
dialog_id = request.args["dialog_id"]
|
104 |
try:
|
105 |
+
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
|
106 |
convs = [d.to_dict() for d in convs]
|
107 |
return get_json_result(data=convs)
|
108 |
except Exception as e:
|
api/utils/file_utils.py
CHANGED
@@ -185,5 +185,11 @@ def thumbnail(filename, blob):
|
|
185 |
pass
|
186 |
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
|
|
|
185 |
pass
|
186 |
|
187 |
|
188 |
+
def traversal_files(base):
|
189 |
+
for root, ds, fs in os.walk(base):
|
190 |
+
for f in fs:
|
191 |
+
fullname = os.path.join(root, f)
|
192 |
+
yield fullname
|
193 |
+
|
194 |
|
195 |
|
deepdoc/README.md
CHANGED
@@ -11,7 +11,36 @@ English | [简体中文](./README_zh.md)
|
|
11 |
|
12 |
With a bunch of documents from various domains with various formats and along with diverse retrieval requirements,
|
13 |
an accurate analysis becomes a very challenge task. *Deep*Doc is born for that purpose.
|
14 |
-
There 2 parts in *Deep*Doc so far: vision and parser.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
<a name="2"></a>
|
17 |
## 2. Vision
|
@@ -19,9 +48,14 @@ There 2 parts in *Deep*Doc so far: vision and parser.
|
|
19 |
We use vision information to resolve problems as human being.
|
20 |
- OCR. Since a lot of documents presented as images or at least be able to transform to image,
|
21 |
OCR is a very essential and fundamental or even universal solution for text extraction.
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
24 |
-
<img src="https://
|
25 |
</div>
|
26 |
|
27 |
- Layout recognition. Documents from different domain may have various layouts,
|
@@ -39,11 +73,18 @@ We use vision information to resolve problems as human being.
|
|
39 |
- Footer
|
40 |
- Reference
|
41 |
- Equation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
43 |
-
<img src="https://github.com/
|
44 |
</div>
|
45 |
|
46 |
-
- Table Structure Recognition(TSR). Data table is a frequently used structure present data including numbers or text.
|
47 |
And the structure of a table might be very complex, like hierarchy headers, spanning cells and projected row headers.
|
48 |
Along with TSR, we also reassemble the content into sentences which could be well comprehended by LLM.
|
49 |
We have five labels for TSR task:
|
@@ -52,8 +93,15 @@ We use vision information to resolve problems as human being.
|
|
52 |
- Column header
|
53 |
- Projected row header
|
54 |
- Spanning cell
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
56 |
-
<img src="https://
|
57 |
</div>
|
58 |
|
59 |
<a name="3"></a>
|
@@ -71,4 +119,4 @@ The résumé is a very complicated kind of document. A résumé which is compose
|
|
71 |
with various layouts could be resolved into structured data composed of nearly a hundred of fields.
|
72 |
We haven't opened the parser yet, as we open the processing method after parsing procedure.
|
73 |
|
74 |
-
|
|
|
11 |
|
12 |
With a bunch of documents from various domains with various formats and along with diverse retrieval requirements,
|
13 |
an accurate analysis becomes a very challenge task. *Deep*Doc is born for that purpose.
|
14 |
+
There are 2 parts in *Deep*Doc so far: vision and parser.
|
15 |
+
You can run the flowing test programs if you're interested in our results of OCR, layout recognition and TSR.
|
16 |
+
```bash
|
17 |
+
python deepdoc/vision/t_ocr.py -h
|
18 |
+
usage: t_ocr.py [-h] --inputs INPUTS [--output_dir OUTPUT_DIR]
|
19 |
+
|
20 |
+
options:
|
21 |
+
-h, --help show this help message and exit
|
22 |
+
--inputs INPUTS Directory where to store images or PDFs, or a file path to a single image or PDF
|
23 |
+
--output_dir OUTPUT_DIR
|
24 |
+
Directory where to store the output images. Default: './ocr_outputs'
|
25 |
+
```
|
26 |
+
```bash
|
27 |
+
python deepdoc/vision/t_recognizer.py -h
|
28 |
+
usage: t_recognizer.py [-h] --inputs INPUTS [--output_dir OUTPUT_DIR] [--threshold THRESHOLD] [--mode {layout,tsr}]
|
29 |
+
|
30 |
+
options:
|
31 |
+
-h, --help show this help message and exit
|
32 |
+
--inputs INPUTS Directory where to store images or PDFs, or a file path to a single image or PDF
|
33 |
+
--output_dir OUTPUT_DIR
|
34 |
+
Directory where to store the output images. Default: './layouts_outputs'
|
35 |
+
--threshold THRESHOLD
|
36 |
+
A threshold to filter out detections. Default: 0.5
|
37 |
+
--mode {layout,tsr} Task mode: layout recognition or table structure recognition
|
38 |
+
```
|
39 |
+
|
40 |
+
Our models are served on HuggingFace. If you have trouble downloading HuggingFace models, this might help!!
|
41 |
+
```bash
|
42 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
43 |
+
```
|
44 |
|
45 |
<a name="2"></a>
|
46 |
## 2. Vision
|
|
|
48 |
We use vision information to resolve problems as human being.
|
49 |
- OCR. Since a lot of documents presented as images or at least be able to transform to image,
|
50 |
OCR is a very essential and fundamental or even universal solution for text extraction.
|
51 |
+
```bash
|
52 |
+
python deepdoc/vision/t_ocr.py --inputs=path_to_images_or_pdfs --output_dir=path_to_store_result
|
53 |
+
```
|
54 |
+
The inputs could be directory to images or PDF, or a image or PDF.
|
55 |
+
You can look into the folder 'path_to_store_result' where has images which demonstrate the positions of results,
|
56 |
+
txt files which contain the OCR text.
|
57 |
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
58 |
+
<img src="https://github.com/infiniflow/ragflow/assets/12318111/f25bee3d-aaf7-4102-baf5-d5208361d110" width="900"/>
|
59 |
</div>
|
60 |
|
61 |
- Layout recognition. Documents from different domain may have various layouts,
|
|
|
73 |
- Footer
|
74 |
- Reference
|
75 |
- Equation
|
76 |
+
|
77 |
+
Have a try on the following command to see the layout detection results.
|
78 |
+
```bash
|
79 |
+
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=layout --output_dir=path_to_store_result
|
80 |
+
```
|
81 |
+
The inputs could be directory to images or PDF, or a image or PDF.
|
82 |
+
You can look into the folder 'path_to_store_result' where has images which demonstrate the detection results as following:
|
83 |
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
84 |
+
<img src="https://github.com/infiniflow/ragflow/assets/12318111/07e0f625-9b28-43d0-9fbb-5bf586cd286f" width="1000"/>
|
85 |
</div>
|
86 |
|
87 |
+
- Table Structure Recognition(TSR). Data table is a frequently used structure to present data including numbers or text.
|
88 |
And the structure of a table might be very complex, like hierarchy headers, spanning cells and projected row headers.
|
89 |
Along with TSR, we also reassemble the content into sentences which could be well comprehended by LLM.
|
90 |
We have five labels for TSR task:
|
|
|
93 |
- Column header
|
94 |
- Projected row header
|
95 |
- Spanning cell
|
96 |
+
|
97 |
+
Have a try on the following command to see the layout detection results.
|
98 |
+
```bash
|
99 |
+
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=tsr --output_dir=path_to_store_result
|
100 |
+
```
|
101 |
+
The inputs could be directory to images or PDF, or a image or PDF.
|
102 |
+
You can look into the folder 'path_to_store_result' where has both images and html pages which demonstrate the detection results as following:
|
103 |
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
104 |
+
<img src="https://github.com/infiniflow/ragflow/assets/12318111/cb24e81b-f2ba-49f3-ac09-883d75606f4c" width="1000"/>
|
105 |
</div>
|
106 |
|
107 |
<a name="3"></a>
|
|
|
119 |
with various layouts could be resolved into structured data composed of nearly a hundred of fields.
|
120 |
We haven't opened the parser yet, as we open the processing method after parsing procedure.
|
121 |
|
122 |
+
|
deepdoc/vision/__init__.py
CHANGED
@@ -1,4 +1,49 @@
|
|
|
|
1 |
from .ocr import OCR
|
2 |
from .recognizer import Recognizer
|
3 |
from .layout_recognizer import LayoutRecognizer
|
4 |
from .table_structure_recognizer import TableStructureRecognizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
from .ocr import OCR
|
3 |
from .recognizer import Recognizer
|
4 |
from .layout_recognizer import LayoutRecognizer
|
5 |
from .table_structure_recognizer import TableStructureRecognizer
|
6 |
+
|
7 |
+
def init_in_out(args):
|
8 |
+
from PIL import Image
|
9 |
+
import fitz
|
10 |
+
import os
|
11 |
+
import traceback
|
12 |
+
from api.utils.file_utils import traversal_files
|
13 |
+
images = []
|
14 |
+
outputs = []
|
15 |
+
|
16 |
+
if not os.path.exists(args.output_dir):
|
17 |
+
os.mkdir(args.output_dir)
|
18 |
+
|
19 |
+
def pdf_pages(fnm, zoomin=3):
|
20 |
+
nonlocal outputs, images
|
21 |
+
pdf = fitz.open(fnm)
|
22 |
+
mat = fitz.Matrix(zoomin, zoomin)
|
23 |
+
for i, page in enumerate(pdf):
|
24 |
+
pix = page.get_pixmap(matrix=mat)
|
25 |
+
img = Image.frombytes("RGB", [pix.width, pix.height],
|
26 |
+
pix.samples)
|
27 |
+
images.append(img)
|
28 |
+
outputs.append(os.path.split(fnm)[-1] + f"_{i}.jpg")
|
29 |
+
|
30 |
+
def images_and_outputs(fnm):
|
31 |
+
nonlocal outputs, images
|
32 |
+
if fnm.split(".")[-1].lower() == "pdf":
|
33 |
+
pdf_pages(fnm)
|
34 |
+
return
|
35 |
+
try:
|
36 |
+
images.append(Image.open(fnm))
|
37 |
+
outputs.append(os.path.split(fnm)[-1])
|
38 |
+
except Exception as e:
|
39 |
+
traceback.print_exc()
|
40 |
+
|
41 |
+
if os.path.isdir(args.inputs):
|
42 |
+
for fnm in traversal_files(args.inputs):
|
43 |
+
images_and_outputs(fnm)
|
44 |
+
else:
|
45 |
+
images_and_outputs(args.inputs)
|
46 |
+
|
47 |
+
for i in range(len(outputs)): outputs[i] = os.path.join(args.output_dir, outputs[i])
|
48 |
+
|
49 |
+
return images, outputs
|
deepdoc/vision/layout_recognizer.py
CHANGED
@@ -1,17 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
from collections import Counter
|
4 |
from copy import deepcopy
|
5 |
-
|
6 |
import numpy as np
|
7 |
-
|
8 |
from api.utils.file_utils import get_project_base_directory
|
9 |
-
from .
|
10 |
|
11 |
|
12 |
class LayoutRecognizer(Recognizer):
|
13 |
-
|
14 |
-
self.layout_labels = [
|
15 |
"_background_",
|
16 |
"Text",
|
17 |
"Title",
|
@@ -24,7 +33,8 @@ class LayoutRecognizer(Recognizer):
|
|
24 |
"Reference",
|
25 |
"Equation",
|
26 |
]
|
27 |
-
|
|
|
28 |
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
29 |
|
30 |
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.7, batch_size=16):
|
@@ -37,7 +47,7 @@ class LayoutRecognizer(Recognizer):
|
|
37 |
return any([re.search(p, b["text"]) for p in patt])
|
38 |
|
39 |
layouts = super().__call__(image_list, thr, batch_size)
|
40 |
-
# save_results(image_list, layouts, self.
|
41 |
assert len(image_list) == len(ocr_res)
|
42 |
# Tag layout type
|
43 |
boxes = []
|
@@ -117,3 +127,5 @@ class LayoutRecognizer(Recognizer):
|
|
117 |
ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
|
118 |
return ocr_res, page_layout
|
119 |
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
#
|
13 |
import os
|
14 |
import re
|
15 |
from collections import Counter
|
16 |
from copy import deepcopy
|
|
|
17 |
import numpy as np
|
|
|
18 |
from api.utils.file_utils import get_project_base_directory
|
19 |
+
from deepdoc.vision import Recognizer
|
20 |
|
21 |
|
22 |
class LayoutRecognizer(Recognizer):
|
23 |
+
labels = [
|
|
|
24 |
"_background_",
|
25 |
"Text",
|
26 |
"Title",
|
|
|
33 |
"Reference",
|
34 |
"Equation",
|
35 |
]
|
36 |
+
def __init__(self, domain):
|
37 |
+
super().__init__(self.labels, domain,
|
38 |
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
39 |
|
40 |
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.7, batch_size=16):
|
|
|
47 |
return any([re.search(p, b["text"]) for p in patt])
|
48 |
|
49 |
layouts = super().__call__(image_list, thr, batch_size)
|
50 |
+
# save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7)
|
51 |
assert len(image_list) == len(ocr_res)
|
52 |
# Tag layout type
|
53 |
boxes = []
|
|
|
127 |
ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
|
128 |
return ocr_res, page_layout
|
129 |
|
130 |
+
|
131 |
+
|
deepdoc/vision/recognizer.py
CHANGED
@@ -17,7 +17,6 @@ from copy import deepcopy
|
|
17 |
import onnxruntime as ort
|
18 |
from huggingface_hub import snapshot_download
|
19 |
|
20 |
-
from . import seeit
|
21 |
from .operators import *
|
22 |
from rag.settings import cron_logger
|
23 |
|
@@ -36,7 +35,7 @@ class Recognizer(object):
|
|
36 |
|
37 |
"""
|
38 |
if not model_dir:
|
39 |
-
model_dir = snapshot_download(repo_id="InfiniFlow/
|
40 |
|
41 |
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
42 |
if not os.path.exists(model_file_path):
|
@@ -46,6 +45,9 @@ class Recognizer(object):
|
|
46 |
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
|
47 |
else:
|
48 |
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
|
|
|
|
|
|
|
49 |
self.label_list = label_list
|
50 |
|
51 |
@staticmethod
|
@@ -275,23 +277,131 @@ class Recognizer(object):
|
|
275 |
return max_overlaped_i
|
276 |
|
277 |
def preprocess(self, image_list):
|
278 |
-
preprocess_ops = []
|
279 |
-
for op_info in [
|
280 |
-
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
|
281 |
-
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
|
282 |
-
{'type': 'Permute'},
|
283 |
-
{'stride': 32, 'type': 'PadStride'}
|
284 |
-
]:
|
285 |
-
new_op_info = op_info.copy()
|
286 |
-
op_type = new_op_info.pop('type')
|
287 |
-
preprocess_ops.append(eval(op_type)(**new_op_info))
|
288 |
-
|
289 |
inputs = []
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
return inputs
|
294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
def __call__(self, image_list, thr=0.7, batch_size=16):
|
296 |
res = []
|
297 |
imgs = []
|
@@ -306,22 +416,14 @@ class Recognizer(object):
|
|
306 |
end_index = min((i + 1) * batch_size, len(imgs))
|
307 |
batch_image_list = imgs[start_index:end_index]
|
308 |
inputs = self.preprocess(batch_image_list)
|
|
|
309 |
for ins in inputs:
|
310 |
-
bb = []
|
311 |
-
for b in self.ort_sess.run(None, ins)[0]:
|
312 |
-
clsid, bbox, score = int(b[0]), b[2:], b[1]
|
313 |
-
if score < thr:
|
314 |
-
continue
|
315 |
-
if clsid >= len(self.label_list):
|
316 |
-
cron_logger.warning(f"bad category id")
|
317 |
-
continue
|
318 |
-
bb.append({
|
319 |
-
"type": self.label_list[clsid].lower(),
|
320 |
-
"bbox": [float(t) for t in bbox.tolist()],
|
321 |
-
"score": float(score)
|
322 |
-
})
|
323 |
res.append(bb)
|
324 |
|
325 |
#seeit.save_results(image_list, res, self.label_list, threshold=thr)
|
326 |
|
327 |
return res
|
|
|
|
|
|
|
|
17 |
import onnxruntime as ort
|
18 |
from huggingface_hub import snapshot_download
|
19 |
|
|
|
20 |
from .operators import *
|
21 |
from rag.settings import cron_logger
|
22 |
|
|
|
35 |
|
36 |
"""
|
37 |
if not model_dir:
|
38 |
+
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
39 |
|
40 |
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
41 |
if not os.path.exists(model_file_path):
|
|
|
45 |
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
|
46 |
else:
|
47 |
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
|
48 |
+
self.input_names = [node.name for node in self.ort_sess.get_inputs()]
|
49 |
+
self.output_names = [node.name for node in self.ort_sess.get_outputs()]
|
50 |
+
self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
|
51 |
self.label_list = label_list
|
52 |
|
53 |
@staticmethod
|
|
|
277 |
return max_overlaped_i
|
278 |
|
279 |
def preprocess(self, image_list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
inputs = []
|
281 |
+
if "scale_factor" in self.input_names:
|
282 |
+
preprocess_ops = []
|
283 |
+
for op_info in [
|
284 |
+
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
|
285 |
+
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
|
286 |
+
{'type': 'Permute'},
|
287 |
+
{'stride': 32, 'type': 'PadStride'}
|
288 |
+
]:
|
289 |
+
new_op_info = op_info.copy()
|
290 |
+
op_type = new_op_info.pop('type')
|
291 |
+
preprocess_ops.append(eval(op_type)(**new_op_info))
|
292 |
+
|
293 |
+
for im_path in image_list:
|
294 |
+
im, im_info = preprocess(im_path, preprocess_ops)
|
295 |
+
inputs.append({"image": np.array((im,)).astype('float32'),
|
296 |
+
"scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
|
297 |
+
else:
|
298 |
+
hh, ww = self.input_shape
|
299 |
+
for img in image_list:
|
300 |
+
h, w = img.shape[:2]
|
301 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
302 |
+
img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
|
303 |
+
# Scale input pixel values to 0 to 1
|
304 |
+
img /= 255.0
|
305 |
+
img = img.transpose(2, 0, 1)
|
306 |
+
img = img[np.newaxis, :, :, :].astype(np.float32)
|
307 |
+
inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
|
308 |
return inputs
|
309 |
|
310 |
+
def postprocess(self, boxes, inputs, thr):
|
311 |
+
if "scale_factor" in self.input_names:
|
312 |
+
bb = []
|
313 |
+
for b in boxes:
|
314 |
+
clsid, bbox, score = int(b[0]), b[2:], b[1]
|
315 |
+
if score < thr:
|
316 |
+
continue
|
317 |
+
if clsid >= len(self.label_list):
|
318 |
+
cron_logger.warning(f"bad category id")
|
319 |
+
continue
|
320 |
+
bb.append({
|
321 |
+
"type": self.label_list[clsid].lower(),
|
322 |
+
"bbox": [float(t) for t in bbox.tolist()],
|
323 |
+
"score": float(score)
|
324 |
+
})
|
325 |
+
return bb
|
326 |
+
|
327 |
+
def xywh2xyxy(x):
|
328 |
+
# [x, y, w, h] to [x1, y1, x2, y2]
|
329 |
+
y = np.copy(x)
|
330 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2
|
331 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2
|
332 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2
|
333 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2
|
334 |
+
return y
|
335 |
+
|
336 |
+
def compute_iou(box, boxes):
|
337 |
+
# Compute xmin, ymin, xmax, ymax for both boxes
|
338 |
+
xmin = np.maximum(box[0], boxes[:, 0])
|
339 |
+
ymin = np.maximum(box[1], boxes[:, 1])
|
340 |
+
xmax = np.minimum(box[2], boxes[:, 2])
|
341 |
+
ymax = np.minimum(box[3], boxes[:, 3])
|
342 |
+
|
343 |
+
# Compute intersection area
|
344 |
+
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
|
345 |
+
|
346 |
+
# Compute union area
|
347 |
+
box_area = (box[2] - box[0]) * (box[3] - box[1])
|
348 |
+
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
349 |
+
union_area = box_area + boxes_area - intersection_area
|
350 |
+
|
351 |
+
# Compute IoU
|
352 |
+
iou = intersection_area / union_area
|
353 |
+
|
354 |
+
return iou
|
355 |
+
|
356 |
+
def iou_filter(boxes, scores, iou_threshold):
|
357 |
+
sorted_indices = np.argsort(scores)[::-1]
|
358 |
+
|
359 |
+
keep_boxes = []
|
360 |
+
while sorted_indices.size > 0:
|
361 |
+
# Pick the last box
|
362 |
+
box_id = sorted_indices[0]
|
363 |
+
keep_boxes.append(box_id)
|
364 |
+
|
365 |
+
# Compute IoU of the picked box with the rest
|
366 |
+
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
|
367 |
+
|
368 |
+
# Remove boxes with IoU over the threshold
|
369 |
+
keep_indices = np.where(ious < iou_threshold)[0]
|
370 |
+
|
371 |
+
# print(keep_indices.shape, sorted_indices.shape)
|
372 |
+
sorted_indices = sorted_indices[keep_indices + 1]
|
373 |
+
|
374 |
+
return keep_boxes
|
375 |
+
|
376 |
+
boxes = np.squeeze(boxes).T
|
377 |
+
# Filter out object confidence scores below threshold
|
378 |
+
scores = np.max(boxes[:, 4:], axis=1)
|
379 |
+
boxes = boxes[scores > thr, :]
|
380 |
+
scores = scores[scores > thr]
|
381 |
+
if len(boxes) == 0: return []
|
382 |
+
|
383 |
+
# Get the class with the highest confidence
|
384 |
+
class_ids = np.argmax(boxes[:, 4:], axis=1)
|
385 |
+
boxes = boxes[:, :4]
|
386 |
+
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
|
387 |
+
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
|
388 |
+
boxes = xywh2xyxy(boxes)
|
389 |
+
|
390 |
+
unique_class_ids = np.unique(class_ids)
|
391 |
+
indices = []
|
392 |
+
for class_id in unique_class_ids:
|
393 |
+
class_indices = np.where(class_ids == class_id)[0]
|
394 |
+
class_boxes = boxes[class_indices, :]
|
395 |
+
class_scores = scores[class_indices]
|
396 |
+
class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
|
397 |
+
indices.extend(class_indices[class_keep_boxes])
|
398 |
+
|
399 |
+
return [{
|
400 |
+
"type": self.label_list[class_ids[i]].lower(),
|
401 |
+
"bbox": [float(t) for t in boxes[i].tolist()],
|
402 |
+
"score": float(scores[i])
|
403 |
+
} for i in indices]
|
404 |
+
|
405 |
def __call__(self, image_list, thr=0.7, batch_size=16):
|
406 |
res = []
|
407 |
imgs = []
|
|
|
416 |
end_index = min((i + 1) * batch_size, len(imgs))
|
417 |
batch_image_list = imgs[start_index:end_index]
|
418 |
inputs = self.preprocess(batch_image_list)
|
419 |
+
print("preprocess")
|
420 |
for ins in inputs:
|
421 |
+
bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
res.append(bb)
|
423 |
|
424 |
#seeit.save_results(image_list, res, self.label_list, threshold=thr)
|
425 |
|
426 |
return res
|
427 |
+
|
428 |
+
|
429 |
+
|
deepdoc/vision/t_ocr.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
#
|
13 |
+
|
14 |
+
import os, sys
|
15 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../')))
|
16 |
+
import numpy as np
|
17 |
+
import argparse
|
18 |
+
from deepdoc.vision import OCR, init_in_out
|
19 |
+
from deepdoc.vision.seeit import draw_box
|
20 |
+
|
21 |
+
def main(args):
|
22 |
+
ocr = OCR()
|
23 |
+
images, outputs = init_in_out(args)
|
24 |
+
|
25 |
+
for i, img in enumerate(images):
|
26 |
+
bxs = ocr(np.array(img))
|
27 |
+
bxs = [(line[0], line[1][0]) for line in bxs]
|
28 |
+
bxs = [{
|
29 |
+
"text": t,
|
30 |
+
"bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]],
|
31 |
+
"type": "ocr",
|
32 |
+
"score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
|
33 |
+
img = draw_box(images[i], bxs, ["ocr"], 1.)
|
34 |
+
img.save(outputs[i], quality=95)
|
35 |
+
with open(outputs[i] + ".txt", "w+") as f: f.write("\n".join([o["text"] for o in bxs]))
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
parser = argparse.ArgumentParser()
|
41 |
+
parser.add_argument('--inputs',
|
42 |
+
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
|
43 |
+
required=True)
|
44 |
+
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'",
|
45 |
+
default="./ocr_outputs")
|
46 |
+
args = parser.parse_args()
|
47 |
+
main(args)
|
deepdoc/vision/t_recognizer.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
#
|
13 |
+
|
14 |
+
import os, sys
|
15 |
+
import re
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../')))
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
from api.utils.file_utils import get_project_base_directory
|
23 |
+
from deepdoc.vision import Recognizer, LayoutRecognizer, TableStructureRecognizer, OCR, init_in_out
|
24 |
+
from deepdoc.vision.seeit import draw_box
|
25 |
+
|
26 |
+
|
27 |
+
def main(args):
|
28 |
+
images, outputs = init_in_out(args)
|
29 |
+
if args.mode.lower() == "layout":
|
30 |
+
labels = LayoutRecognizer.labels
|
31 |
+
detr = Recognizer(labels, "layout.paper", os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
32 |
+
if args.mode.lower() == "tsr":
|
33 |
+
labels = TableStructureRecognizer.labels
|
34 |
+
detr = TableStructureRecognizer()
|
35 |
+
ocr = OCR()
|
36 |
+
|
37 |
+
layouts = detr(images, float(args.threshold))
|
38 |
+
for i, lyt in enumerate(layouts):
|
39 |
+
if args.mode.lower() == "tsr":
|
40 |
+
#lyt = [t for t in lyt if t["type"] == "table column"]
|
41 |
+
html = get_table_html(images[i], lyt, ocr)
|
42 |
+
with open(outputs[i]+".html", "w+") as f: f.write(html)
|
43 |
+
lyt = [{
|
44 |
+
"type": t["label"],
|
45 |
+
"bbox": [t["x0"], t["top"], t["x1"], t["bottom"]],
|
46 |
+
"score": t["score"]
|
47 |
+
} for t in lyt]
|
48 |
+
img = draw_box(images[i], lyt, labels, float(args.threshold))
|
49 |
+
img.save(outputs[i], quality=95)
|
50 |
+
print("save result to: " + outputs[i])
|
51 |
+
|
52 |
+
|
53 |
+
def get_table_html(img, tb_cpns, ocr):
|
54 |
+
boxes = ocr(np.array(img))
|
55 |
+
boxes = Recognizer.sort_Y_firstly(
|
56 |
+
[{"x0": b[0][0], "x1": b[1][0],
|
57 |
+
"top": b[0][1], "text": t[0],
|
58 |
+
"bottom": b[-1][1],
|
59 |
+
"layout_type": "table",
|
60 |
+
"page_number": 0} for b, t in boxes if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
|
61 |
+
np.mean([b[-1][1]-b[0][1] for b,_ in boxes]) / 3
|
62 |
+
)
|
63 |
+
|
64 |
+
def gather(kwd, fzy=10, ption=0.6):
|
65 |
+
nonlocal boxes
|
66 |
+
eles = Recognizer.sort_Y_firstly(
|
67 |
+
[r for r in tb_cpns if re.match(kwd, r["label"])], fzy)
|
68 |
+
eles = Recognizer.layouts_cleanup(boxes, eles, 5, ption)
|
69 |
+
return Recognizer.sort_Y_firstly(eles, 0)
|
70 |
+
|
71 |
+
headers = gather(r".*header$")
|
72 |
+
rows = gather(r".* (row|header)")
|
73 |
+
spans = gather(r".*spanning")
|
74 |
+
clmns = sorted([r for r in tb_cpns if re.match(
|
75 |
+
r"table column$", r["label"])], key=lambda x: x["x0"])
|
76 |
+
clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)
|
77 |
+
for b in boxes:
|
78 |
+
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
|
79 |
+
if ii is not None:
|
80 |
+
b["R"] = ii
|
81 |
+
b["R_top"] = rows[ii]["top"]
|
82 |
+
b["R_bott"] = rows[ii]["bottom"]
|
83 |
+
|
84 |
+
ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
|
85 |
+
if ii is not None:
|
86 |
+
b["H_top"] = headers[ii]["top"]
|
87 |
+
b["H_bott"] = headers[ii]["bottom"]
|
88 |
+
b["H_left"] = headers[ii]["x0"]
|
89 |
+
b["H_right"] = headers[ii]["x1"]
|
90 |
+
b["H"] = ii
|
91 |
+
|
92 |
+
ii = Recognizer.find_overlapped_with_threashold(b, clmns, thr=0.3)
|
93 |
+
if ii is not None:
|
94 |
+
b["C"] = ii
|
95 |
+
b["C_left"] = clmns[ii]["x0"]
|
96 |
+
b["C_right"] = clmns[ii]["x1"]
|
97 |
+
|
98 |
+
ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
|
99 |
+
if ii is not None:
|
100 |
+
b["H_top"] = spans[ii]["top"]
|
101 |
+
b["H_bott"] = spans[ii]["bottom"]
|
102 |
+
b["H_left"] = spans[ii]["x0"]
|
103 |
+
b["H_right"] = spans[ii]["x1"]
|
104 |
+
b["SP"] = ii
|
105 |
+
html = """
|
106 |
+
<html>
|
107 |
+
<head>
|
108 |
+
<style>
|
109 |
+
._table_1nkzy_11 {
|
110 |
+
margin: auto;
|
111 |
+
width: 70%%;
|
112 |
+
padding: 10px;
|
113 |
+
}
|
114 |
+
._table_1nkzy_11 p {
|
115 |
+
margin-bottom: 50px;
|
116 |
+
border: 1px solid #e1e1e1;
|
117 |
+
}
|
118 |
+
|
119 |
+
caption {
|
120 |
+
color: #6ac1ca;
|
121 |
+
font-size: 20px;
|
122 |
+
height: 50px;
|
123 |
+
line-height: 50px;
|
124 |
+
font-weight: 600;
|
125 |
+
margin-bottom: 10px;
|
126 |
+
}
|
127 |
+
|
128 |
+
._table_1nkzy_11 table {
|
129 |
+
width: 100%%;
|
130 |
+
border-collapse: collapse;
|
131 |
+
}
|
132 |
+
|
133 |
+
th {
|
134 |
+
color: #fff;
|
135 |
+
background-color: #6ac1ca;
|
136 |
+
}
|
137 |
+
|
138 |
+
td:hover {
|
139 |
+
background: #c1e8e8;
|
140 |
+
}
|
141 |
+
|
142 |
+
tr:nth-child(even) {
|
143 |
+
background-color: #f2f2f2;
|
144 |
+
}
|
145 |
+
|
146 |
+
._table_1nkzy_11 th,
|
147 |
+
._table_1nkzy_11 td {
|
148 |
+
text-align: center;
|
149 |
+
border: 1px solid #ddd;
|
150 |
+
padding: 8px;
|
151 |
+
}
|
152 |
+
</style>
|
153 |
+
</head>
|
154 |
+
<body>
|
155 |
+
%s
|
156 |
+
</body>
|
157 |
+
</html>
|
158 |
+
"""% TableStructureRecognizer.construct_table(boxes, html=True)
|
159 |
+
return html
|
160 |
+
|
161 |
+
|
162 |
+
if __name__ == "__main__":
|
163 |
+
parser = argparse.ArgumentParser()
|
164 |
+
parser.add_argument('--inputs',
|
165 |
+
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
|
166 |
+
required=True)
|
167 |
+
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './layouts_outputs'",
|
168 |
+
default="./layouts_outputs")
|
169 |
+
parser.add_argument('--threshold', help="A threshold to filter out detections. Default: 0.5", default=0.5)
|
170 |
+
parser.add_argument('--mode', help="Task mode: layout recognition or table structure recognition", choices=["layout", "tsr"],
|
171 |
+
default="layout")
|
172 |
+
args = parser.parse_args()
|
173 |
+
main(args)
|
deepdoc/vision/table_structure_recognizer.py
CHANGED
@@ -1,3 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import os
|
3 |
import re
|
@@ -12,15 +24,16 @@ from .recognizer import Recognizer
|
|
12 |
|
13 |
|
14 |
class TableStructureRecognizer(Recognizer):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def __init__(self):
|
16 |
-
self.labels = [
|
17 |
-
"table",
|
18 |
-
"table column",
|
19 |
-
"table row",
|
20 |
-
"table column header",
|
21 |
-
"table projected row header",
|
22 |
-
"table spanning cell",
|
23 |
-
]
|
24 |
super().__init__(self.labels, "tsr",
|
25 |
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
26 |
|
@@ -79,7 +92,8 @@ class TableStructureRecognizer(Recognizer):
|
|
79 |
return True
|
80 |
return False
|
81 |
|
82 |
-
|
|
|
83 |
patt = [
|
84 |
("^(20|19)[0-9]{2}[年/-][0-9]{1,2}[月/-][0-9]{1,2}日*$", "Dt"),
|
85 |
(r"^(20|19)[0-9]{2}年$", "Dt"),
|
@@ -109,11 +123,12 @@ class TableStructureRecognizer(Recognizer):
|
|
109 |
|
110 |
return "Ot"
|
111 |
|
112 |
-
|
|
|
113 |
cap = ""
|
114 |
i = 0
|
115 |
while i < len(boxes):
|
116 |
-
if
|
117 |
cap += boxes[i]["text"]
|
118 |
boxes.pop(i)
|
119 |
i -= 1
|
@@ -122,14 +137,15 @@ class TableStructureRecognizer(Recognizer):
|
|
122 |
if not boxes:
|
123 |
return []
|
124 |
for b in boxes:
|
125 |
-
b["btype"] =
|
126 |
max_type = Counter([b["btype"] for b in boxes]).items()
|
127 |
max_type = max(max_type, key=lambda x: x[1])[0] if max_type else ""
|
128 |
logging.debug("MAXTYPE: " + max_type)
|
129 |
|
130 |
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b]
|
131 |
rowh = np.min(rowh) if rowh else 0
|
132 |
-
boxes =
|
|
|
133 |
boxes[0]["rn"] = 0
|
134 |
rows = [[boxes[0]]]
|
135 |
btm = boxes[0]["bottom"]
|
@@ -150,9 +166,9 @@ class TableStructureRecognizer(Recognizer):
|
|
150 |
colwm = np.min(colwm) if colwm else 0
|
151 |
crosspage = len(set([b["page_number"] for b in boxes])) > 1
|
152 |
if crosspage:
|
153 |
-
boxes =
|
154 |
else:
|
155 |
-
boxes =
|
156 |
boxes[0]["cn"] = 0
|
157 |
cols = [[boxes[0]]]
|
158 |
right = boxes[0]["x1"]
|
@@ -313,16 +329,18 @@ class TableStructureRecognizer(Recognizer):
|
|
313 |
hdset.add(i)
|
314 |
|
315 |
if html:
|
316 |
-
return
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
|
321 |
-
return
|
322 |
-
|
323 |
-
|
|
|
324 |
|
325 |
-
|
|
|
326 |
# constrcut HTML
|
327 |
html = "<table>"
|
328 |
if cap:
|
@@ -339,8 +357,8 @@ class TableStructureRecognizer(Recognizer):
|
|
339 |
txt = ""
|
340 |
if arr:
|
341 |
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2, 10)
|
342 |
-
txt = "".join([c["text"]
|
343 |
-
for c in
|
344 |
txts.append(txt)
|
345 |
sp = ""
|
346 |
if arr[0].get("colspan"):
|
@@ -366,7 +384,8 @@ class TableStructureRecognizer(Recognizer):
|
|
366 |
html += "\n</table>"
|
367 |
return html
|
368 |
|
369 |
-
|
|
|
370 |
# get text of every colomn in header row to become header text
|
371 |
clmno = len(tbl[0])
|
372 |
rowno = len(tbl)
|
@@ -469,7 +488,8 @@ class TableStructureRecognizer(Recognizer):
|
|
469 |
row_txt = [t + f"\t——{from_}“{cap}”" for t in row_txt]
|
470 |
return row_txt
|
471 |
|
472 |
-
|
|
|
473 |
# caculate span
|
474 |
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
|
475 |
for cln in cols]
|
@@ -553,4 +573,3 @@ class TableStructureRecognizer(Recognizer):
|
|
553 |
tbl[rowspan[0]][colspan[0]] = arr
|
554 |
|
555 |
return tbl
|
556 |
-
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
#
|
13 |
import logging
|
14 |
import os
|
15 |
import re
|
|
|
24 |
|
25 |
|
26 |
class TableStructureRecognizer(Recognizer):
|
27 |
+
labels = [
|
28 |
+
"table",
|
29 |
+
"table column",
|
30 |
+
"table row",
|
31 |
+
"table column header",
|
32 |
+
"table projected row header",
|
33 |
+
"table spanning cell",
|
34 |
+
]
|
35 |
+
|
36 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
super().__init__(self.labels, "tsr",
|
38 |
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
39 |
|
|
|
92 |
return True
|
93 |
return False
|
94 |
|
95 |
+
@staticmethod
|
96 |
+
def blockType(b):
|
97 |
patt = [
|
98 |
("^(20|19)[0-9]{2}[年/-][0-9]{1,2}[月/-][0-9]{1,2}日*$", "Dt"),
|
99 |
(r"^(20|19)[0-9]{2}年$", "Dt"),
|
|
|
123 |
|
124 |
return "Ot"
|
125 |
|
126 |
+
@staticmethod
|
127 |
+
def construct_table(boxes, is_english=False, html=False):
|
128 |
cap = ""
|
129 |
i = 0
|
130 |
while i < len(boxes):
|
131 |
+
if TableStructureRecognizer.is_caption(boxes[i]):
|
132 |
cap += boxes[i]["text"]
|
133 |
boxes.pop(i)
|
134 |
i -= 1
|
|
|
137 |
if not boxes:
|
138 |
return []
|
139 |
for b in boxes:
|
140 |
+
b["btype"] = TableStructureRecognizer.blockType(b)
|
141 |
max_type = Counter([b["btype"] for b in boxes]).items()
|
142 |
max_type = max(max_type, key=lambda x: x[1])[0] if max_type else ""
|
143 |
logging.debug("MAXTYPE: " + max_type)
|
144 |
|
145 |
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b]
|
146 |
rowh = np.min(rowh) if rowh else 0
|
147 |
+
boxes = Recognizer.sort_R_firstly(boxes, rowh / 2)
|
148 |
+
#for b in boxes:print(b)
|
149 |
boxes[0]["rn"] = 0
|
150 |
rows = [[boxes[0]]]
|
151 |
btm = boxes[0]["bottom"]
|
|
|
166 |
colwm = np.min(colwm) if colwm else 0
|
167 |
crosspage = len(set([b["page_number"] for b in boxes])) > 1
|
168 |
if crosspage:
|
169 |
+
boxes = Recognizer.sort_X_firstly(boxes, colwm / 2, False)
|
170 |
else:
|
171 |
+
boxes = Recognizer.sort_C_firstly(boxes, colwm / 2)
|
172 |
boxes[0]["cn"] = 0
|
173 |
cols = [[boxes[0]]]
|
174 |
right = boxes[0]["x1"]
|
|
|
329 |
hdset.add(i)
|
330 |
|
331 |
if html:
|
332 |
+
return TableStructureRecognizer.__html_table(cap, hdset,
|
333 |
+
TableStructureRecognizer.__cal_spans(boxes, rows,
|
334 |
+
cols, tbl, True)
|
335 |
+
)
|
336 |
|
337 |
+
return TableStructureRecognizer.__desc_table(cap, hdset,
|
338 |
+
TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl,
|
339 |
+
False),
|
340 |
+
is_english)
|
341 |
|
342 |
+
@staticmethod
|
343 |
+
def __html_table(cap, hdset, tbl):
|
344 |
# constrcut HTML
|
345 |
html = "<table>"
|
346 |
if cap:
|
|
|
357 |
txt = ""
|
358 |
if arr:
|
359 |
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2, 10)
|
360 |
+
txt = " ".join([c["text"]
|
361 |
+
for c in Recognizer.sort_Y_firstly(arr, h)])
|
362 |
txts.append(txt)
|
363 |
sp = ""
|
364 |
if arr[0].get("colspan"):
|
|
|
384 |
html += "\n</table>"
|
385 |
return html
|
386 |
|
387 |
+
@staticmethod
|
388 |
+
def __desc_table(cap, hdr_rowno, tbl, is_english):
|
389 |
# get text of every colomn in header row to become header text
|
390 |
clmno = len(tbl[0])
|
391 |
rowno = len(tbl)
|
|
|
488 |
row_txt = [t + f"\t——{from_}“{cap}”" for t in row_txt]
|
489 |
return row_txt
|
490 |
|
491 |
+
@staticmethod
|
492 |
+
def __cal_spans(boxes, rows, cols, tbl, html=True):
|
493 |
# caculate span
|
494 |
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
|
495 |
for cln in cols]
|
|
|
573 |
tbl[rowspan[0]][colspan[0]] = arr
|
574 |
|
575 |
return tbl
|
|