|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from jina import Deployment |
|
from docarray import BaseDoc |
|
from jina import Executor, requests |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
import argparse |
|
import torch |
|
|
|
|
|
class Prompt(BaseDoc): |
|
message: list[dict] |
|
gen_conf: dict |
|
|
|
|
|
class Generation(BaseDoc): |
|
text: str |
|
|
|
|
|
tokenizer = None |
|
model_name = "" |
|
|
|
|
|
class TokenStreamingExecutor(Executor): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
model_name, device_map="auto", torch_dtype="auto" |
|
) |
|
|
|
@requests(on="/chat") |
|
async def generate(self, doc: Prompt, **kwargs) -> Generation: |
|
text = tokenizer.apply_chat_template( |
|
doc.message, |
|
tokenize=False, |
|
) |
|
inputs = tokenizer([text], return_tensors="pt") |
|
generation_config = GenerationConfig( |
|
**doc.gen_conf, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
generated_ids = self.model.generate( |
|
inputs.input_ids, generation_config=generation_config |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids) :] |
|
for input_ids, output_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
yield Generation(text=response) |
|
|
|
@requests(on="/stream") |
|
async def task(self, doc: Prompt, **kwargs) -> Generation: |
|
text = tokenizer.apply_chat_template( |
|
doc.message, |
|
tokenize=False, |
|
) |
|
input = tokenizer([text], return_tensors="pt") |
|
input_len = input["input_ids"].shape[1] |
|
max_new_tokens = 512 |
|
if "max_new_tokens" in doc.gen_conf: |
|
max_new_tokens = doc.gen_conf.pop("max_new_tokens") |
|
generation_config = GenerationConfig( |
|
**doc.gen_conf, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
for _ in range(max_new_tokens): |
|
output = self.model.generate( |
|
**input, max_new_tokens=1, generation_config=generation_config |
|
) |
|
if output[0][-1] == tokenizer.eos_token_id: |
|
break |
|
yield Generation( |
|
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True) |
|
) |
|
input = { |
|
"input_ids": output, |
|
"attention_mask": torch.ones(1, len(output[0])), |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_name", type=str, help="Model name or path") |
|
parser.add_argument("--port", default=12345, type=int, help="Jina serving port") |
|
args = parser.parse_args() |
|
model_name = args.model_name |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name) |
|
with Deployment( |
|
uses=TokenStreamingExecutor, port=args.port, protocol="grpc" |
|
) as dep: |
|
dep.block() |
|
|