ragflow / rag /svr /jina_server.py
jinhai-2012's picture
Update comments (#4569)
fa82d94
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from jina import Deployment
from docarray import BaseDoc
from jina import Executor, requests
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import argparse
import torch
class Prompt(BaseDoc):
message: list[dict]
gen_conf: dict
class Generation(BaseDoc):
text: str
tokenizer = None
model_name = ""
class TokenStreamingExecutor(Executor):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.model = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", torch_dtype="auto"
)
@requests(on="/chat")
async def generate(self, doc: Prompt, **kwargs) -> Generation:
text = tokenizer.apply_chat_template(
doc.message,
tokenize=False,
)
inputs = tokenizer([text], return_tensors="pt")
generation_config = GenerationConfig(
**doc.gen_conf,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
generated_ids = self.model.generate(
inputs.input_ids, generation_config=generation_config
)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
yield Generation(text=response)
@requests(on="/stream")
async def task(self, doc: Prompt, **kwargs) -> Generation:
text = tokenizer.apply_chat_template(
doc.message,
tokenize=False,
)
input = tokenizer([text], return_tensors="pt")
input_len = input["input_ids"].shape[1]
max_new_tokens = 512
if "max_new_tokens" in doc.gen_conf:
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
generation_config = GenerationConfig(
**doc.gen_conf,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
for _ in range(max_new_tokens):
output = self.model.generate(
**input, max_new_tokens=1, generation_config=generation_config
)
if output[0][-1] == tokenizer.eos_token_id:
break
yield Generation(
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
)
input = {
"input_ids": output,
"attention_mask": torch.ones(1, len(output[0])),
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, help="Model name or path")
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
args = parser.parse_args()
model_name = args.model_name
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
with Deployment(
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
) as dep:
dep.block()