|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import re |
|
from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait |
|
from threading import Lock |
|
import umap |
|
import numpy as np |
|
from sklearn.mixture import GaussianMixture |
|
|
|
from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache |
|
from rag.utils import truncate |
|
|
|
|
|
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval: |
|
def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1): |
|
self._max_cluster = max_cluster |
|
self._llm_model = llm_model |
|
self._embd_model = embd_model |
|
self._threshold = threshold |
|
self._prompt = prompt |
|
self._max_token = max_token |
|
|
|
def _chat(self, system, history, gen_conf): |
|
response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf) |
|
if response: |
|
return response |
|
response = self._llm_model.chat(system, history, gen_conf) |
|
if response.find("**ERROR**") >= 0: |
|
raise Exception(response) |
|
set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf) |
|
return response |
|
|
|
def _embedding_encode(self, txt): |
|
response = get_embed_cache(self._embd_model.llm_name, txt) |
|
if response: |
|
return response |
|
embds, _ = self._embd_model.encode([txt]) |
|
if len(embds) < 1 or len(embds[0]) < 1: |
|
raise Exception("Embedding error: ") |
|
embds = embds[0] |
|
set_embed_cache(self._embd_model.llm_name, txt, embds) |
|
return embds |
|
|
|
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int): |
|
max_clusters = min(self._max_cluster, len(embeddings)) |
|
n_clusters = np.arange(1, max_clusters) |
|
bics = [] |
|
for n in n_clusters: |
|
gm = GaussianMixture(n_components=n, random_state=random_state) |
|
gm.fit(embeddings) |
|
bics.append(gm.bic(embeddings)) |
|
optimal_clusters = n_clusters[np.argmin(bics)] |
|
return optimal_clusters |
|
|
|
def __call__(self, chunks, random_state, callback=None): |
|
layers = [(0, len(chunks))] |
|
start, end = 0, len(chunks) |
|
if len(chunks) <= 1: |
|
return |
|
chunks = [(s, a) for s, a in chunks if s and len(a) > 0] |
|
|
|
def summarize(ck_idx, lock): |
|
nonlocal chunks |
|
try: |
|
texts = [chunks[i][0] for i in ck_idx] |
|
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts)) |
|
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts]) |
|
cnt = self._chat("You're a helpful assistant.", |
|
[{"role": "user", |
|
"content": self._prompt.format(cluster_content=cluster_content)}], |
|
{"temperature": 0.3, "max_tokens": self._max_token} |
|
) |
|
cnt = re.sub("(路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵|For the content length reason, it stopped, continue?)", "", |
|
cnt) |
|
logging.debug(f"SUM: {cnt}") |
|
embds, _ = self._embd_model.encode([cnt]) |
|
with lock: |
|
chunks.append((cnt, self._embedding_encode(cnt))) |
|
except Exception as e: |
|
logging.exception("summarize got exception") |
|
return e |
|
|
|
labels = [] |
|
while end - start > 1: |
|
embeddings = [embd for _, embd in chunks[start: end]] |
|
if len(embeddings) == 2: |
|
summarize([start, start + 1], Lock()) |
|
if callback: |
|
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end)) |
|
labels.extend([0, 0]) |
|
layers.append((end, len(chunks))) |
|
start = end |
|
end = len(chunks) |
|
continue |
|
|
|
n_neighbors = int((len(embeddings) - 1) ** 0.8) |
|
reduced_embeddings = umap.UMAP( |
|
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine" |
|
).fit_transform(embeddings) |
|
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) |
|
if n_clusters == 1: |
|
lbls = [0 for _ in range(len(reduced_embeddings))] |
|
else: |
|
gm = GaussianMixture(n_components=n_clusters, random_state=random_state) |
|
gm.fit(reduced_embeddings) |
|
probs = gm.predict_proba(reduced_embeddings) |
|
lbls = [np.where(prob > self._threshold)[0] for prob in probs] |
|
lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls] |
|
lock = Lock() |
|
with ThreadPoolExecutor(max_workers=12) as executor: |
|
threads = [] |
|
for c in range(n_clusters): |
|
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c] |
|
if not ck_idx: |
|
continue |
|
threads.append(executor.submit(summarize, ck_idx, lock)) |
|
wait(threads, return_when=ALL_COMPLETED) |
|
for th in threads: |
|
if isinstance(th.result(), Exception): |
|
raise th.result() |
|
logging.debug(str([t.result() for t in threads])) |
|
|
|
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters) |
|
labels.extend(lbls) |
|
layers.append((end, len(chunks))) |
|
if callback: |
|
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end)) |
|
start = end |
|
end = len(chunks) |
|
|
|
return chunks |
|
|
|
|