ragflow / rag /benchmark.py
zhichyu's picture
Refactor embedding batch_size (#3825)
08913be
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import sys
import time
import argparse
from collections import defaultdict
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.knowledgebase_service import KnowledgebaseService
from api import settings
from api.utils import get_uuid
from rag.nlp import tokenize, search
from ranx import evaluate
from ranx import Qrels, Run
import pandas as pd
from tqdm import tqdm
global max_docs
max_docs = sys.maxsize
class Benchmark:
def __init__(self, kb_id):
self.kb_id = kb_id
e, self.kb = KnowledgebaseService.get_by_id(kb_id)
self.similarity_threshold = self.kb.similarity_threshold
self.vector_similarity_weight = self.kb.vector_similarity_weight
self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
self.tenant_id = ''
self.index_name = ''
self.initialized_index = False
def _get_retrieval(self, qrels):
# Need to wait for the ES and Infinity index to be ready
time.sleep(20)
run = defaultdict(dict)
query_list = list(qrels.keys())
for query in query_list:
ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
0.0, self.vector_similarity_weight)
if len(ranks["chunks"]) == 0:
print(f"deleted query: {query}")
del qrels[query]
continue
for c in ranks["chunks"]:
c.pop("vector", None)
run[query][c["chunk_id"]] = c["similarity"]
return run
def embedding(self, docs):
texts = [d["content_with_weight"] for d in docs]
embeddings, _ = self.embd_mdl.encode(texts)
assert len(docs) == len(embeddings)
vector_size = 0
for i, d in enumerate(docs):
v = embeddings[i]
vector_size = len(v)
d["q_%d_vec" % len(v)] = v
return docs, vector_size
def init_index(self, vector_size: int):
if self.initialized_index:
return
if settings.docStoreConn.indexExist(self.index_name, self.kb_id):
settings.docStoreConn.deleteIdx(self.index_name, self.kb_id)
settings.docStoreConn.createIdx(self.index_name, self.kb_id, vector_size)
self.initialized_index = True
def ms_marco_index(self, file_path, index_name):
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs_count = 0
docs = []
filelist = sorted(os.listdir(file_path))
for fn in filelist:
if docs_count >= max_docs:
break
if not fn.endswith(".parquet"):
continue
data = pd.read_parquet(os.path.join(file_path, fn))
for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn):
if docs_count >= max_docs:
break
query = data.iloc[i]['query']
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
d = {
"id": get_uuid(),
"kb_id": self.kb.id,
"docnm_kwd": "xxxxx",
"doc_id": "ksksks"
}
tokenize(d, text, "english")
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs_count += len(docs)
docs, vector_size = self.embedding(docs)
self.init_index(vector_size)
settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
docs = []
if docs:
docs, vector_size = self.embedding(docs)
self.init_index(vector_size)
settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
return qrels, texts
def trivia_qa_index(self, file_path, index_name):
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs_count = 0
docs = []
filelist = sorted(os.listdir(file_path))
for fn in filelist:
if docs_count >= max_docs:
break
if not fn.endswith(".parquet"):
continue
data = pd.read_parquet(os.path.join(file_path, fn))
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn):
if docs_count >= max_docs:
break
query = data.iloc[i]['question']
for rel, text in zip(data.iloc[i]["search_results"]['rank'],
data.iloc[i]["search_results"]['search_context']):
d = {
"id": get_uuid(),
"kb_id": self.kb.id,
"docnm_kwd": "xxxxx",
"doc_id": "ksksks"
}
tokenize(d, text, "english")
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs_count += len(docs)
docs, vector_size = self.embedding(docs)
self.init_index(vector_size)
settings.docStoreConn.insert(docs,self.index_name)
docs = []
docs, vector_size = self.embedding(docs)
self.init_index(vector_size)
settings.docStoreConn.insert(docs, self.index_name)
return qrels, texts
def miracl_index(self, file_path, corpus_path, index_name):
corpus_total = {}
for corpus_file in os.listdir(corpus_path):
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
for index, i in tmp_data.iterrows():
corpus_total[i['docid']] = i['text']
topics_total = {}
for topics_file in os.listdir(os.path.join(file_path, 'topics')):
if 'test' in topics_file:
continue
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
for index, i in tmp_data.iterrows():
topics_total[i['qid']] = i['query']
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs_count = 0
docs = []
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
if 'test' in qrels_file:
continue
if docs_count >= max_docs:
break
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
names=['qid', 'Q0', 'docid', 'relevance'])
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
if docs_count >= max_docs:
break
query = topics_total[tmp_data.iloc[i]['qid']]
text = corpus_total[tmp_data.iloc[i]['docid']]
rel = tmp_data.iloc[i]['relevance']
d = {
"id": get_uuid(),
"kb_id": self.kb.id,
"docnm_kwd": "xxxxx",
"doc_id": "ksksks"
}
tokenize(d, text, 'english')
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs_count += len(docs)
docs, vector_size = self.embedding(docs)
self.init_index(vector_size)
settings.docStoreConn.insert(docs, self.index_name)
docs = []
docs, vector_size = self.embedding(docs)
self.init_index(vector_size)
settings.docStoreConn.insert(docs, self.index_name)
return qrels, texts
def save_results(self, qrels, run, texts, dataset, file_path):
keep_result = []
run_keys = list(run.keys())
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
key = run_keys[run_i]
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
f.write('## Score For Every Query\n')
for keep_result_i in keep_result:
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
scores = sorted(scores, key=lambda kk: kk[1])
for score in scores[:10]:
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+", encoding='utf-8'), indent=2)
json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+", encoding='utf-8'), indent=2)
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
def __call__(self, dataset, file_path, miracl_corpus=''):
if dataset == "ms_marco_v1.1":
self.tenant_id = "benchmark_ms_marco_v11"
self.index_name = search.index_name(self.tenant_id)
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
run = self._get_retrieval(qrels)
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
self.save_results(qrels, run, texts, dataset, file_path)
if dataset == "trivia_qa":
self.tenant_id = "benchmark_trivia_qa"
self.index_name = search.index_name(self.tenant_id)
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
run = self._get_retrieval(qrels)
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
self.save_results(qrels, run, texts, dataset, file_path)
if dataset == "miracl":
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
'yo', 'zh']:
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
continue
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
continue
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
continue
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
continue
self.tenant_id = "benchmark_miracl_" + lang
self.index_name = search.index_name(self.tenant_id)
self.initialized_index = False
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
"benchmark_miracl_" + lang)
run = self._get_retrieval(qrels)
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
self.save_results(qrels, run, texts, dataset, file_path)
if __name__ == '__main__':
print('*****************RAGFlow Benchmark*****************')
parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark')
parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate')
parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id')
parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl')
parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path')
parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl')
args = parser.parse_args()
max_docs = args.max_docs
kb_id = args.kb_id
ex = Benchmark(kb_id)
dataset = args.dataset
dataset_path = args.dataset_path
if dataset == "ms_marco_v1.1" or dataset == "trivia_qa":
ex(dataset, dataset_path)
elif dataset == "miracl":
if len(args) < 5:
print('Please input the correct parameters!')
exit(1)
miracl_corpus_path = args[4]
ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path)
else:
print("Dataset: ", dataset, "not supported!")