|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import sys |
|
import time |
|
import argparse |
|
from collections import defaultdict |
|
|
|
from api.db import LLMType |
|
from api.db.services.llm_service import LLMBundle |
|
from api.db.services.knowledgebase_service import KnowledgebaseService |
|
from api import settings |
|
from api.utils import get_uuid |
|
from rag.nlp import tokenize, search |
|
from ranx import evaluate |
|
from ranx import Qrels, Run |
|
import pandas as pd |
|
from tqdm import tqdm |
|
|
|
global max_docs |
|
max_docs = sys.maxsize |
|
|
|
|
|
class Benchmark: |
|
def __init__(self, kb_id): |
|
self.kb_id = kb_id |
|
e, self.kb = KnowledgebaseService.get_by_id(kb_id) |
|
self.similarity_threshold = self.kb.similarity_threshold |
|
self.vector_similarity_weight = self.kb.vector_similarity_weight |
|
self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language) |
|
self.tenant_id = '' |
|
self.index_name = '' |
|
self.initialized_index = False |
|
|
|
def _get_retrieval(self, qrels): |
|
|
|
time.sleep(20) |
|
run = defaultdict(dict) |
|
query_list = list(qrels.keys()) |
|
for query in query_list: |
|
ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30, |
|
0.0, self.vector_similarity_weight) |
|
if len(ranks["chunks"]) == 0: |
|
print(f"deleted query: {query}") |
|
del qrels[query] |
|
continue |
|
for c in ranks["chunks"]: |
|
c.pop("vector", None) |
|
run[query][c["chunk_id"]] = c["similarity"] |
|
return run |
|
|
|
def embedding(self, docs): |
|
texts = [d["content_with_weight"] for d in docs] |
|
embeddings, _ = self.embd_mdl.encode(texts) |
|
assert len(docs) == len(embeddings) |
|
vector_size = 0 |
|
for i, d in enumerate(docs): |
|
v = embeddings[i] |
|
vector_size = len(v) |
|
d["q_%d_vec" % len(v)] = v |
|
return docs, vector_size |
|
|
|
def init_index(self, vector_size: int): |
|
if self.initialized_index: |
|
return |
|
if settings.docStoreConn.indexExist(self.index_name, self.kb_id): |
|
settings.docStoreConn.deleteIdx(self.index_name, self.kb_id) |
|
settings.docStoreConn.createIdx(self.index_name, self.kb_id, vector_size) |
|
self.initialized_index = True |
|
|
|
def ms_marco_index(self, file_path, index_name): |
|
qrels = defaultdict(dict) |
|
texts = defaultdict(dict) |
|
docs_count = 0 |
|
docs = [] |
|
filelist = sorted(os.listdir(file_path)) |
|
|
|
for fn in filelist: |
|
if docs_count >= max_docs: |
|
break |
|
if not fn.endswith(".parquet"): |
|
continue |
|
data = pd.read_parquet(os.path.join(file_path, fn)) |
|
for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn): |
|
if docs_count >= max_docs: |
|
break |
|
query = data.iloc[i]['query'] |
|
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']): |
|
d = { |
|
"id": get_uuid(), |
|
"kb_id": self.kb.id, |
|
"docnm_kwd": "xxxxx", |
|
"doc_id": "ksksks" |
|
} |
|
tokenize(d, text, "english") |
|
docs.append(d) |
|
texts[d["id"]] = text |
|
qrels[query][d["id"]] = int(rel) |
|
if len(docs) >= 32: |
|
docs_count += len(docs) |
|
docs, vector_size = self.embedding(docs) |
|
self.init_index(vector_size) |
|
settings.docStoreConn.insert(docs, self.index_name, self.kb_id) |
|
docs = [] |
|
|
|
if docs: |
|
docs, vector_size = self.embedding(docs) |
|
self.init_index(vector_size) |
|
settings.docStoreConn.insert(docs, self.index_name, self.kb_id) |
|
return qrels, texts |
|
|
|
def trivia_qa_index(self, file_path, index_name): |
|
qrels = defaultdict(dict) |
|
texts = defaultdict(dict) |
|
docs_count = 0 |
|
docs = [] |
|
filelist = sorted(os.listdir(file_path)) |
|
for fn in filelist: |
|
if docs_count >= max_docs: |
|
break |
|
if not fn.endswith(".parquet"): |
|
continue |
|
data = pd.read_parquet(os.path.join(file_path, fn)) |
|
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn): |
|
if docs_count >= max_docs: |
|
break |
|
query = data.iloc[i]['question'] |
|
for rel, text in zip(data.iloc[i]["search_results"]['rank'], |
|
data.iloc[i]["search_results"]['search_context']): |
|
d = { |
|
"id": get_uuid(), |
|
"kb_id": self.kb.id, |
|
"docnm_kwd": "xxxxx", |
|
"doc_id": "ksksks" |
|
} |
|
tokenize(d, text, "english") |
|
docs.append(d) |
|
texts[d["id"]] = text |
|
qrels[query][d["id"]] = int(rel) |
|
if len(docs) >= 32: |
|
docs_count += len(docs) |
|
docs, vector_size = self.embedding(docs) |
|
self.init_index(vector_size) |
|
settings.docStoreConn.insert(docs,self.index_name) |
|
docs = [] |
|
|
|
docs, vector_size = self.embedding(docs) |
|
self.init_index(vector_size) |
|
settings.docStoreConn.insert(docs, self.index_name) |
|
return qrels, texts |
|
|
|
def miracl_index(self, file_path, corpus_path, index_name): |
|
corpus_total = {} |
|
for corpus_file in os.listdir(corpus_path): |
|
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True) |
|
for index, i in tmp_data.iterrows(): |
|
corpus_total[i['docid']] = i['text'] |
|
|
|
topics_total = {} |
|
for topics_file in os.listdir(os.path.join(file_path, 'topics')): |
|
if 'test' in topics_file: |
|
continue |
|
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query']) |
|
for index, i in tmp_data.iterrows(): |
|
topics_total[i['qid']] = i['query'] |
|
|
|
qrels = defaultdict(dict) |
|
texts = defaultdict(dict) |
|
docs_count = 0 |
|
docs = [] |
|
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')): |
|
if 'test' in qrels_file: |
|
continue |
|
if docs_count >= max_docs: |
|
break |
|
|
|
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t', |
|
names=['qid', 'Q0', 'docid', 'relevance']) |
|
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file): |
|
if docs_count >= max_docs: |
|
break |
|
query = topics_total[tmp_data.iloc[i]['qid']] |
|
text = corpus_total[tmp_data.iloc[i]['docid']] |
|
rel = tmp_data.iloc[i]['relevance'] |
|
d = { |
|
"id": get_uuid(), |
|
"kb_id": self.kb.id, |
|
"docnm_kwd": "xxxxx", |
|
"doc_id": "ksksks" |
|
} |
|
tokenize(d, text, 'english') |
|
docs.append(d) |
|
texts[d["id"]] = text |
|
qrels[query][d["id"]] = int(rel) |
|
if len(docs) >= 32: |
|
docs_count += len(docs) |
|
docs, vector_size = self.embedding(docs) |
|
self.init_index(vector_size) |
|
settings.docStoreConn.insert(docs, self.index_name) |
|
docs = [] |
|
|
|
docs, vector_size = self.embedding(docs) |
|
self.init_index(vector_size) |
|
settings.docStoreConn.insert(docs, self.index_name) |
|
return qrels, texts |
|
|
|
def save_results(self, qrels, run, texts, dataset, file_path): |
|
keep_result = [] |
|
run_keys = list(run.keys()) |
|
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"): |
|
key = run_keys[run_i] |
|
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key], |
|
'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")}) |
|
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10']) |
|
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f: |
|
f.write('## Score For Every Query\n') |
|
for keep_result_i in keep_result: |
|
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n') |
|
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()] |
|
scores = sorted(scores, key=lambda kk: kk[1]) |
|
for score in scores[:10]: |
|
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n') |
|
json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+", encoding='utf-8'), indent=2) |
|
json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+", encoding='utf-8'), indent=2) |
|
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!') |
|
|
|
def __call__(self, dataset, file_path, miracl_corpus=''): |
|
if dataset == "ms_marco_v1.1": |
|
self.tenant_id = "benchmark_ms_marco_v11" |
|
self.index_name = search.index_name(self.tenant_id) |
|
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1") |
|
run = self._get_retrieval(qrels) |
|
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"])) |
|
self.save_results(qrels, run, texts, dataset, file_path) |
|
if dataset == "trivia_qa": |
|
self.tenant_id = "benchmark_trivia_qa" |
|
self.index_name = search.index_name(self.tenant_id) |
|
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa") |
|
run = self._get_retrieval(qrels) |
|
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"])) |
|
self.save_results(qrels, run, texts, dataset, file_path) |
|
if dataset == "miracl": |
|
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', |
|
'yo', 'zh']: |
|
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)): |
|
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!') |
|
continue |
|
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')): |
|
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!') |
|
continue |
|
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')): |
|
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!') |
|
continue |
|
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)): |
|
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!') |
|
continue |
|
self.tenant_id = "benchmark_miracl_" + lang |
|
self.index_name = search.index_name(self.tenant_id) |
|
self.initialized_index = False |
|
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang), |
|
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang), |
|
"benchmark_miracl_" + lang) |
|
run = self._get_retrieval(qrels) |
|
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"])) |
|
self.save_results(qrels, run, texts, dataset, file_path) |
|
|
|
|
|
if __name__ == '__main__': |
|
print('*****************RAGFlow Benchmark*****************') |
|
parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark') |
|
parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate') |
|
parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id') |
|
parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl') |
|
parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path') |
|
parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl') |
|
|
|
args = parser.parse_args() |
|
max_docs = args.max_docs |
|
kb_id = args.kb_id |
|
ex = Benchmark(kb_id) |
|
|
|
dataset = args.dataset |
|
dataset_path = args.dataset_path |
|
|
|
if dataset == "ms_marco_v1.1" or dataset == "trivia_qa": |
|
ex(dataset, dataset_path) |
|
elif dataset == "miracl": |
|
if len(args) < 5: |
|
print('Please input the correct parameters!') |
|
exit(1) |
|
miracl_corpus_path = args[4] |
|
ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path) |
|
else: |
|
print("Dataset: ", dataset, "not supported!") |
|
|