|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import copy |
|
import re |
|
|
|
from api.db import ParserType |
|
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks |
|
from deepdoc.parser import PdfParser, PlainParser |
|
import numpy as np |
|
|
|
|
|
class Pdf(PdfParser): |
|
def __init__(self): |
|
self.model_speciess = ParserType.PAPER.value |
|
super().__init__() |
|
|
|
def __call__(self, filename, binary=None, from_page=0, |
|
to_page=100000, zoomin=3, callback=None): |
|
from timeit import default_timer as timer |
|
start = timer() |
|
callback(msg="OCR started") |
|
self.__images__( |
|
filename if not binary else binary, |
|
zoomin, |
|
from_page, |
|
to_page, |
|
callback |
|
) |
|
callback(msg="OCR finished ({:.2f}s)".format(timer() - start)) |
|
|
|
start = timer() |
|
self._layouts_rec(zoomin) |
|
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start)) |
|
logging.debug(f"layouts cost: {timer() - start}s") |
|
|
|
start = timer() |
|
self._table_transformer_job(zoomin) |
|
callback(0.68, "Table analysis ({:.2f}s)".format(timer() - start)) |
|
|
|
start = timer() |
|
self._text_merge() |
|
tbls = self._extract_table_figure(True, zoomin, True, True) |
|
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) |
|
self._concat_downward() |
|
self._filter_forpages() |
|
callback(0.75, "Text merged ({:.2f}s)".format(timer() - start)) |
|
|
|
|
|
if column_width < self.page_images[0].size[0] / zoomin / 2: |
|
logging.debug("two_column................... {} {}".format(column_width, |
|
self.page_images[0].size[0] / zoomin / 2)) |
|
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2) |
|
for b in self.boxes: |
|
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip()) |
|
|
|
def _begin(txt): |
|
return re.match( |
|
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)", |
|
txt.lower().strip()) |
|
|
|
if from_page > 0: |
|
return { |
|
"title": "", |
|
"authors": "", |
|
"abstract": "", |
|
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if |
|
re.match(r"(text|title)", b.get("layoutno", "text"))], |
|
"tables": tbls |
|
} |
|
|
|
title = "" |
|
authors = [] |
|
i = 0 |
|
while i < min(32, len(self.boxes)-1): |
|
b = self.boxes[i] |
|
i += 1 |
|
if b.get("layoutno", "").find("title") >= 0: |
|
title = b["text"] |
|
if _begin(title): |
|
title = "" |
|
break |
|
for j in range(3): |
|
if _begin(self.boxes[i + j]["text"]): |
|
break |
|
authors.append(self.boxes[i + j]["text"]) |
|
break |
|
break |
|
|
|
abstr = "" |
|
i = 0 |
|
while i + 1 < min(32, len(self.boxes)): |
|
b = self.boxes[i] |
|
i += 1 |
|
txt = b["text"].lower().strip() |
|
if re.match("(abstract|摘要)", txt): |
|
if len(txt.split()) > 32 or len(txt) > 64: |
|
abstr = txt + self._line_tag(b, zoomin) |
|
break |
|
txt = self.boxes[i]["text"].lower().strip() |
|
if len(txt.split()) > 32 or len(txt) > 64: |
|
abstr = txt + self._line_tag(self.boxes[i], zoomin) |
|
i += 1 |
|
break |
|
if not abstr: |
|
i = 0 |
|
|
|
callback( |
|
0.8, "Page {}~{}: Text merging finished".format( |
|
from_page, min( |
|
to_page, self.total_page))) |
|
for b in self.boxes: |
|
logging.debug("{} {}".format(b["text"], b.get("layoutno"))) |
|
logging.debug("{}".format(tbls)) |
|
|
|
return { |
|
"title": title, |
|
"authors": " ".join(authors), |
|
"abstract": abstr, |
|
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if |
|
re.match(r"(text|title)", b.get("layoutno", "text"))], |
|
"tables": tbls |
|
} |
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000, |
|
lang="Chinese", callback=None, **kwargs): |
|
""" |
|
Only pdf is supported. |
|
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly. |
|
""" |
|
if re.search(r"\.pdf$", filename, re.IGNORECASE): |
|
if kwargs.get("parser_config", {}).get("layout_recognize", "DeepDOC") == "Plain Text": |
|
pdf_parser = PlainParser() |
|
paper = { |
|
"title": filename, |
|
"authors": " ", |
|
"abstract": "", |
|
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0], |
|
"tables": [] |
|
} |
|
else: |
|
pdf_parser = Pdf() |
|
paper = pdf_parser(filename if not binary else binary, |
|
from_page=from_page, to_page=to_page, callback=callback) |
|
else: |
|
raise NotImplementedError("file type not supported yet(pdf supported)") |
|
|
|
doc = {"docnm_kwd": filename, "authors_tks": rag_tokenizer.tokenize(paper["authors"]), |
|
"title_tks": rag_tokenizer.tokenize(paper["title"] if paper["title"] else filename)} |
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) |
|
doc["authors_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["authors_tks"]) |
|
|
|
eng = lang.lower() == "english" |
|
logging.debug("It's English.....{}".format(eng)) |
|
|
|
res = tokenize_table(paper["tables"], doc, eng) |
|
|
|
if paper["abstract"]: |
|
d = copy.deepcopy(doc) |
|
txt = pdf_parser.remove_tag(paper["abstract"]) |
|
d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"] |
|
d["important_tks"] = " ".join(d["important_kwd"]) |
|
d["image"], poss = pdf_parser.crop( |
|
paper["abstract"], need_position=True) |
|
add_positions(d, poss) |
|
tokenize(d, txt, eng) |
|
res.append(d) |
|
|
|
sorted_sections = paper["sections"] |
|
|
|
|
|
bull = bullets_category([txt for txt, _ in sorted_sections]) |
|
most_level, levels = title_frequency(bull, sorted_sections) |
|
assert len(sorted_sections) == len(levels) |
|
sec_ids = [] |
|
sid = 0 |
|
for i, lvl in enumerate(levels): |
|
if lvl <= most_level and i > 0 and lvl != levels[i - 1]: |
|
sid += 1 |
|
sec_ids.append(sid) |
|
logging.debug("{} {} {} {}".format(lvl, sorted_sections[i][0], most_level, sid)) |
|
|
|
chunks = [] |
|
last_sid = -2 |
|
for (txt, _), sec_id in zip(sorted_sections, sec_ids): |
|
if sec_id == last_sid: |
|
if chunks: |
|
chunks[-1] += "\n" + txt |
|
continue |
|
chunks.append(txt) |
|
last_sid = sec_id |
|
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser)) |
|
return res |
|
|
|
|
|
""" |
|
readed = [0] * len(paper["lines"]) |
|
# find colon firstly |
|
i = 0 |
|
while i + 1 < len(paper["lines"]): |
|
txt = pdf_parser.remove_tag(paper["lines"][i][0]) |
|
j = i |
|
if txt.strip("\n").strip()[-1] not in "::": |
|
i += 1 |
|
continue |
|
i += 1 |
|
while i < len(paper["lines"]) and not paper["lines"][i][0]: |
|
i += 1 |
|
if i >= len(paper["lines"]): break |
|
proj = [paper["lines"][i][0].strip()] |
|
i += 1 |
|
while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]: |
|
proj.append(paper["lines"][i]) |
|
i += 1 |
|
for k in range(j, i): readed[k] = True |
|
txt = txt[::-1] |
|
if eng: |
|
r = re.search(r"(.*?) ([\\.;?!]|$)", txt) |
|
txt = r.group(1)[::-1] if r else txt[::-1] |
|
else: |
|
r = re.search(r"(.*?) ([。?;!]|$)", txt) |
|
txt = r.group(1)[::-1] if r else txt[::-1] |
|
for p in proj: |
|
d = copy.deepcopy(doc) |
|
txt += "\n" + pdf_parser.remove_tag(p) |
|
d["image"], poss = pdf_parser.crop(p, need_position=True) |
|
add_positions(d, poss) |
|
tokenize(d, txt, eng) |
|
res.append(d) |
|
|
|
i = 0 |
|
chunk = [] |
|
tk_cnt = 0 |
|
def add_chunk(): |
|
nonlocal chunk, res, doc, pdf_parser, tk_cnt |
|
d = copy.deepcopy(doc) |
|
ck = "\n".join(chunk) |
|
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english) |
|
d["image"], poss = pdf_parser.crop(ck, need_position=True) |
|
add_positions(d, poss) |
|
res.append(d) |
|
chunk = [] |
|
tk_cnt = 0 |
|
|
|
while i < len(paper["lines"]): |
|
if tk_cnt > 128: |
|
add_chunk() |
|
if readed[i]: |
|
i += 1 |
|
continue |
|
readed[i] = True |
|
txt, layouts = paper["lines"][i] |
|
txt_ = pdf_parser.remove_tag(txt) |
|
i += 1 |
|
cnt = num_tokens_from_string(txt_) |
|
if any([ |
|
layouts.find("title") >= 0 and chunk, |
|
cnt + tk_cnt > 128 and tk_cnt > 32, |
|
]): |
|
add_chunk() |
|
chunk = [txt] |
|
tk_cnt = cnt |
|
else: |
|
chunk.append(txt) |
|
tk_cnt += cnt |
|
|
|
if chunk: add_chunk() |
|
for i, d in enumerate(res): |
|
print(d) |
|
# d["image"].save(f"./logs/{i}.jpg") |
|
return res |
|
""" |
|
|
|
if __name__ == "__main__": |
|
import sys |
|
|
|
def dummy(prog=None, msg=""): |
|
pass |
|
chunk(sys.argv[1], callback=dummy) |
|
|