|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from tika import parser |
|
import re |
|
from io import BytesIO |
|
|
|
from deepdoc.parser.utils import get_text |
|
from rag.nlp import bullets_category, is_english,remove_contents_table, \ |
|
hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table, \ |
|
tokenize_chunks |
|
from rag.nlp import rag_tokenizer |
|
from deepdoc.parser import PdfParser, DocxParser, PlainParser, HtmlParser |
|
|
|
|
|
class Pdf(PdfParser): |
|
def __call__(self, filename, binary=None, from_page=0, |
|
to_page=100000, zoomin=3, callback=None): |
|
from timeit import default_timer as timer |
|
start = timer() |
|
callback(msg="OCR started") |
|
self.__images__( |
|
filename if not binary else binary, |
|
zoomin, |
|
from_page, |
|
to_page, |
|
callback) |
|
callback(msg="OCR finished ({:.2f}s)".format(timer() - start)) |
|
|
|
start = timer() |
|
self._layouts_rec(zoomin) |
|
callback(0.67, "Layout analysis ({:.2f}s)".format(timer() - start)) |
|
logging.debug("layouts: {}".format(timer() - start)) |
|
|
|
start = timer() |
|
self._table_transformer_job(zoomin) |
|
callback(0.68, "Table analysis ({:.2f}s)".format(timer() - start)) |
|
|
|
start = timer() |
|
self._text_merge() |
|
tbls = self._extract_table_figure(True, zoomin, True, True) |
|
self._naive_vertical_merge() |
|
self._filter_forpages() |
|
self._merge_with_same_bullet() |
|
callback(0.8, "Text extraction ({:.2f}s)".format(timer() - start)) |
|
|
|
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) |
|
for b in self.boxes], tbls |
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000, |
|
lang="Chinese", callback=None, **kwargs): |
|
""" |
|
Supported file formats are docx, pdf, txt. |
|
Since a book is long and not all the parts are useful, if it's a PDF, |
|
please setup the page ranges for every book in order eliminate negative effects and save elapsed computing time. |
|
""" |
|
doc = { |
|
"docnm_kwd": filename, |
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename)) |
|
} |
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) |
|
pdf_parser = None |
|
sections, tbls = [], [] |
|
if re.search(r"\.docx$", filename, re.IGNORECASE): |
|
callback(0.1, "Start to parse.") |
|
doc_parser = DocxParser() |
|
|
|
sections, tbls = doc_parser( |
|
binary if binary else filename, from_page=from_page, to_page=to_page) |
|
remove_contents_table(sections, eng=is_english( |
|
random_choices([t for t, _ in sections], k=200))) |
|
tbls = [((None, lns), None) for lns in tbls] |
|
callback(0.8, "Finish parsing.") |
|
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE): |
|
pdf_parser = Pdf() |
|
if kwargs.get("layout_recognize", "DeepDOC") == "Plain Text": |
|
pdf_parser = PlainParser() |
|
sections, tbls = pdf_parser(filename if not binary else binary, |
|
from_page=from_page, to_page=to_page, callback=callback) |
|
|
|
elif re.search(r"\.txt$", filename, re.IGNORECASE): |
|
callback(0.1, "Start to parse.") |
|
txt = get_text(filename, binary) |
|
sections = txt.split("\n") |
|
sections = [(line, "") for line in sections if line] |
|
remove_contents_table(sections, eng=is_english( |
|
random_choices([t for t, _ in sections], k=200))) |
|
callback(0.8, "Finish parsing.") |
|
|
|
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE): |
|
callback(0.1, "Start to parse.") |
|
sections = HtmlParser()(filename, binary) |
|
sections = [(line, "") for line in sections if line] |
|
remove_contents_table(sections, eng=is_english( |
|
random_choices([t for t, _ in sections], k=200))) |
|
callback(0.8, "Finish parsing.") |
|
|
|
elif re.search(r"\.doc$", filename, re.IGNORECASE): |
|
callback(0.1, "Start to parse.") |
|
binary = BytesIO(binary) |
|
doc_parsed = parser.from_buffer(binary) |
|
sections = doc_parsed['content'].split('\n') |
|
sections = [(line, "") for line in sections if line] |
|
remove_contents_table(sections, eng=is_english( |
|
random_choices([t for t, _ in sections], k=200))) |
|
callback(0.8, "Finish parsing.") |
|
|
|
else: |
|
raise NotImplementedError( |
|
"file type not supported yet(doc, docx, pdf, txt supported)") |
|
|
|
make_colon_as_title(sections) |
|
bull = bullets_category( |
|
[t for t in random_choices([t for t, _ in sections], k=100)]) |
|
if bull >= 0: |
|
chunks = ["\n".join(ck) |
|
for ck in hierarchical_merge(bull, sections, 5)] |
|
else: |
|
sections = [s.split("@") for s, _ in sections] |
|
sections = [(pr[0], "@" + pr[1]) if len(pr) == 2 else (pr[0], '') for pr in sections ] |
|
chunks = naive_merge( |
|
sections, kwargs.get( |
|
"chunk_token_num", 256), kwargs.get( |
|
"delimer", "\n。;!?")) |
|
|
|
|
|
|
|
eng = lang.lower() == "english" |
|
|
|
res = tokenize_table(tbls, doc, eng) |
|
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser)) |
|
|
|
return res |
|
|
|
|
|
if __name__ == "__main__": |
|
import sys |
|
|
|
def dummy(prog=None, msg=""): |
|
pass |
|
chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy) |
|
|