|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import hashlib |
|
import json |
|
import random |
|
import re |
|
from concurrent.futures import ThreadPoolExecutor |
|
from copy import deepcopy |
|
from datetime import datetime |
|
from io import BytesIO |
|
|
|
from peewee import fn |
|
|
|
from api.db.db_utils import bulk_insert_into_db |
|
from api import settings |
|
from api.utils import current_timestamp, get_format_time, get_uuid |
|
from graphrag.mind_map_extractor import MindMapExtractor |
|
from rag.settings import SVR_QUEUE_NAME |
|
from rag.utils.storage_factory import STORAGE_IMPL |
|
from rag.nlp import search, rag_tokenizer |
|
|
|
from api.db import FileType, TaskStatus, ParserType, LLMType |
|
from api.db.db_models import DB, Knowledgebase, Tenant, Task, UserTenant |
|
from api.db.db_models import Document |
|
from api.db.services.common_service import CommonService |
|
from api.db.services.knowledgebase_service import KnowledgebaseService |
|
from api.db import StatusEnum |
|
from rag.utils.redis_conn import REDIS_CONN |
|
|
|
|
|
class DocumentService(CommonService): |
|
model = Document |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_list(cls, kb_id, page_number, items_per_page, |
|
orderby, desc, keywords, id, name): |
|
docs = cls.model.select().where(cls.model.kb_id == kb_id) |
|
if id: |
|
docs = docs.where( |
|
cls.model.id == id) |
|
if name: |
|
docs = docs.where( |
|
cls.model.name == name |
|
) |
|
if keywords: |
|
docs = docs.where( |
|
fn.LOWER(cls.model.name).contains(keywords.lower()) |
|
) |
|
if desc: |
|
docs = docs.order_by(cls.model.getter_by(orderby).desc()) |
|
else: |
|
docs = docs.order_by(cls.model.getter_by(orderby).asc()) |
|
|
|
docs = docs.paginate(page_number, items_per_page) |
|
count = docs.count() |
|
return list(docs.dicts()), count |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_by_kb_id(cls, kb_id, page_number, items_per_page, |
|
orderby, desc, keywords): |
|
if keywords: |
|
docs = cls.model.select().where( |
|
(cls.model.kb_id == kb_id), |
|
(fn.LOWER(cls.model.name).contains(keywords.lower())) |
|
) |
|
else: |
|
docs = cls.model.select().where(cls.model.kb_id == kb_id) |
|
count = docs.count() |
|
if desc: |
|
docs = docs.order_by(cls.model.getter_by(orderby).desc()) |
|
else: |
|
docs = docs.order_by(cls.model.getter_by(orderby).asc()) |
|
|
|
docs = docs.paginate(page_number, items_per_page) |
|
|
|
return list(docs.dicts()), count |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def insert(cls, doc): |
|
if not cls.save(**doc): |
|
raise RuntimeError("Database error (Document)!") |
|
e, doc = cls.get_by_id(doc["id"]) |
|
if not e: |
|
raise RuntimeError("Database error (Document retrieval)!") |
|
e, kb = KnowledgebaseService.get_by_id(doc.kb_id) |
|
if not KnowledgebaseService.update_by_id( |
|
kb.id, {"doc_num": kb.doc_num + 1}): |
|
raise RuntimeError("Database error (Knowledgebase)!") |
|
return doc |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def remove_document(cls, doc, tenant_id): |
|
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id) |
|
cls.clear_chunk_num(doc.id) |
|
return cls.delete_by_id(doc.id) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_newly_uploaded(cls): |
|
fields = [ |
|
cls.model.id, |
|
cls.model.kb_id, |
|
cls.model.parser_id, |
|
cls.model.parser_config, |
|
cls.model.name, |
|
cls.model.type, |
|
cls.model.location, |
|
cls.model.size, |
|
Knowledgebase.tenant_id, |
|
Tenant.embd_id, |
|
Tenant.img2txt_id, |
|
Tenant.asr_id, |
|
cls.model.update_time] |
|
docs = cls.model.select(*fields) \ |
|
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \ |
|
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id)) \ |
|
.where( |
|
cls.model.status == StatusEnum.VALID.value, |
|
~(cls.model.type == FileType.VIRTUAL.value), |
|
cls.model.progress == 0, |
|
cls.model.update_time >= current_timestamp() - 1000 * 600, |
|
cls.model.run == TaskStatus.RUNNING.value) \ |
|
.order_by(cls.model.update_time.asc()) |
|
return list(docs.dicts()) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_unfinished_docs(cls): |
|
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg, |
|
cls.model.run] |
|
docs = cls.model.select(*fields) \ |
|
.where( |
|
cls.model.status == StatusEnum.VALID.value, |
|
~(cls.model.type == FileType.VIRTUAL.value), |
|
cls.model.progress < 1, |
|
cls.model.progress > 0) |
|
return list(docs.dicts()) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation): |
|
num = cls.model.update(token_num=cls.model.token_num + token_num, |
|
chunk_num=cls.model.chunk_num + chunk_num, |
|
process_duation=cls.model.process_duation + duation).where( |
|
cls.model.id == doc_id).execute() |
|
if num == 0: |
|
raise LookupError( |
|
"Document not found which is supposed to be there") |
|
num = Knowledgebase.update( |
|
token_num=Knowledgebase.token_num + |
|
token_num, |
|
chunk_num=Knowledgebase.chunk_num + |
|
chunk_num).where( |
|
Knowledgebase.id == kb_id).execute() |
|
return num |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def decrement_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation): |
|
num = cls.model.update(token_num=cls.model.token_num - token_num, |
|
chunk_num=cls.model.chunk_num - chunk_num, |
|
process_duation=cls.model.process_duation + duation).where( |
|
cls.model.id == doc_id).execute() |
|
if num == 0: |
|
raise LookupError( |
|
"Document not found which is supposed to be there") |
|
num = Knowledgebase.update( |
|
token_num=Knowledgebase.token_num - |
|
token_num, |
|
chunk_num=Knowledgebase.chunk_num - |
|
chunk_num |
|
).where( |
|
Knowledgebase.id == kb_id).execute() |
|
return num |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def clear_chunk_num(cls, doc_id): |
|
doc = cls.model.get_by_id(doc_id) |
|
assert doc, "Can't fine document in database." |
|
|
|
num = Knowledgebase.update( |
|
token_num=Knowledgebase.token_num - |
|
doc.token_num, |
|
chunk_num=Knowledgebase.chunk_num - |
|
doc.chunk_num, |
|
doc_num=Knowledgebase.doc_num - 1 |
|
).where( |
|
Knowledgebase.id == doc.kb_id).execute() |
|
return num |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_tenant_id(cls, doc_id): |
|
docs = cls.model.select( |
|
Knowledgebase.tenant_id).join( |
|
Knowledgebase, on=( |
|
Knowledgebase.id == cls.model.kb_id)).where( |
|
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value) |
|
docs = docs.dicts() |
|
if not docs: |
|
return |
|
return docs[0]["tenant_id"] |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_knowledgebase_id(cls, doc_id): |
|
docs = cls.model.select(cls.model.kb_id).where(cls.model.id == doc_id) |
|
docs = docs.dicts() |
|
if not docs: |
|
return |
|
return docs[0]["kb_id"] |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_tenant_id_by_name(cls, name): |
|
docs = cls.model.select( |
|
Knowledgebase.tenant_id).join( |
|
Knowledgebase, on=( |
|
Knowledgebase.id == cls.model.kb_id)).where( |
|
cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value) |
|
docs = docs.dicts() |
|
if not docs: |
|
return |
|
return docs[0]["tenant_id"] |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def accessible(cls, doc_id, user_id): |
|
docs = cls.model.select( |
|
cls.model.id).join( |
|
Knowledgebase, on=( |
|
Knowledgebase.id == cls.model.kb_id) |
|
).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id) |
|
).where(cls.model.id == doc_id, UserTenant.user_id == user_id).paginate(0, 1) |
|
docs = docs.dicts() |
|
if not docs: |
|
return False |
|
return True |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def accessible4deletion(cls, doc_id, user_id): |
|
docs = cls.model.select( |
|
cls.model.id).join( |
|
Knowledgebase, on=( |
|
Knowledgebase.id == cls.model.kb_id) |
|
).where(cls.model.id == doc_id, Knowledgebase.created_by == user_id).paginate(0, 1) |
|
docs = docs.dicts() |
|
if not docs: |
|
return False |
|
return True |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_embd_id(cls, doc_id): |
|
docs = cls.model.select( |
|
Knowledgebase.embd_id).join( |
|
Knowledgebase, on=( |
|
Knowledgebase.id == cls.model.kb_id)).where( |
|
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value) |
|
docs = docs.dicts() |
|
if not docs: |
|
return |
|
return docs[0]["embd_id"] |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_doc_id_by_doc_name(cls, doc_name): |
|
fields = [cls.model.id] |
|
doc_id = cls.model.select(*fields) \ |
|
.where(cls.model.name == doc_name) |
|
doc_id = doc_id.dicts() |
|
if not doc_id: |
|
return |
|
return doc_id[0]["id"] |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_thumbnails(cls, docids): |
|
fields = [cls.model.id, cls.model.kb_id, cls.model.thumbnail] |
|
return list(cls.model.select( |
|
*fields).where(cls.model.id.in_(docids)).dicts()) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def update_parser_config(cls, id, config): |
|
e, d = cls.get_by_id(id) |
|
if not e: |
|
raise LookupError(f"Document({id}) not found.") |
|
|
|
def dfs_update(old, new): |
|
for k, v in new.items(): |
|
if k not in old: |
|
old[k] = v |
|
continue |
|
if isinstance(v, dict): |
|
assert isinstance(old[k], dict) |
|
dfs_update(old[k], v) |
|
else: |
|
old[k] = v |
|
|
|
dfs_update(d.parser_config, config) |
|
cls.update_by_id(id, {"parser_config": d.parser_config}) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_doc_count(cls, tenant_id): |
|
docs = cls.model.select(cls.model.id).join(Knowledgebase, |
|
on=(Knowledgebase.id == cls.model.kb_id)).where( |
|
Knowledgebase.tenant_id == tenant_id) |
|
return len(docs) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def begin2parse(cls, docid): |
|
cls.update_by_id( |
|
docid, {"progress": random.random() * 1 / 100., |
|
"progress_msg": "Task is queued...", |
|
"process_begin_at": get_format_time() |
|
}) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def update_progress(cls): |
|
docs = cls.get_unfinished_docs() |
|
for d in docs: |
|
try: |
|
tsks = Task.query(doc_id=d["id"], order_by=Task.create_time) |
|
if not tsks: |
|
continue |
|
msg = [] |
|
prg = 0 |
|
finished = True |
|
bad = 0 |
|
e, doc = DocumentService.get_by_id(d["id"]) |
|
status = doc.run |
|
for t in tsks: |
|
if 0 <= t.progress < 1: |
|
finished = False |
|
prg += t.progress if t.progress >= 0 else 0 |
|
if t.progress_msg not in msg: |
|
msg.append(t.progress_msg) |
|
if t.progress == -1: |
|
bad += 1 |
|
prg /= len(tsks) |
|
if finished and bad: |
|
prg = -1 |
|
status = TaskStatus.FAIL.value |
|
elif finished: |
|
if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find( |
|
" raptor") < 0: |
|
queue_raptor_tasks(d) |
|
prg = 0.98 * len(tsks) / (len(tsks) + 1) |
|
msg.append("------ RAPTOR -------") |
|
else: |
|
status = TaskStatus.DONE.value |
|
|
|
msg = "\n".join(msg) |
|
info = { |
|
"process_duation": datetime.timestamp( |
|
datetime.now()) - |
|
d["process_begin_at"].timestamp(), |
|
"run": status} |
|
if prg != 0: |
|
info["progress"] = prg |
|
if msg: |
|
info["progress_msg"] = msg |
|
cls.update_by_id(d["id"], info) |
|
except Exception as e: |
|
if str(e).find("'0'") < 0: |
|
logging.exception("fetch task exception") |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_kb_doc_count(cls, kb_id): |
|
return len(cls.model.select(cls.model.id).where( |
|
cls.model.kb_id == kb_id).dicts()) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def do_cancel(cls, doc_id): |
|
try: |
|
_, doc = DocumentService.get_by_id(doc_id) |
|
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0 |
|
except Exception: |
|
pass |
|
return False |
|
|
|
|
|
def queue_raptor_tasks(doc): |
|
def new_task(): |
|
nonlocal doc |
|
return { |
|
"id": get_uuid(), |
|
"doc_id": doc["id"], |
|
"from_page": 0, |
|
"to_page": -1, |
|
"progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval)." |
|
} |
|
|
|
task = new_task() |
|
bulk_insert_into_db(Task, [task], True) |
|
task["type"] = "raptor" |
|
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status." |
|
|
|
|
|
def doc_upload_and_parse(conversation_id, file_objs, user_id): |
|
from rag.app import presentation, picture, naive, audio, email |
|
from api.db.services.dialog_service import ConversationService, DialogService |
|
from api.db.services.file_service import FileService |
|
from api.db.services.llm_service import LLMBundle |
|
from api.db.services.user_service import TenantService |
|
from api.db.services.api_service import API4ConversationService |
|
|
|
e, conv = ConversationService.get_by_id(conversation_id) |
|
if not e: |
|
e, conv = API4ConversationService.get_by_id(conversation_id) |
|
assert e, "Conversation not found!" |
|
|
|
e, dia = DialogService.get_by_id(conv.dialog_id) |
|
kb_id = dia.kb_ids[0] |
|
e, kb = KnowledgebaseService.get_by_id(kb_id) |
|
if not e: |
|
raise LookupError("Can't find this knowledgebase!") |
|
|
|
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language) |
|
|
|
err, files = FileService.upload_document(kb, file_objs, user_id) |
|
assert not err, "\n".join(err) |
|
|
|
def dummy(prog=None, msg=""): |
|
pass |
|
|
|
FACTORY = { |
|
ParserType.PRESENTATION.value: presentation, |
|
ParserType.PICTURE.value: picture, |
|
ParserType.AUDIO.value: audio, |
|
ParserType.EMAIL.value: email |
|
} |
|
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False} |
|
exe = ThreadPoolExecutor(max_workers=12) |
|
threads = [] |
|
doc_nm = {} |
|
for d, blob in files: |
|
doc_nm[d["id"]] = d["name"] |
|
for d, blob in files: |
|
kwargs = { |
|
"callback": dummy, |
|
"parser_config": parser_config, |
|
"from_page": 0, |
|
"to_page": 100000, |
|
"tenant_id": kb.tenant_id, |
|
"lang": kb.language |
|
} |
|
threads.append(exe.submit(FACTORY.get(d["parser_id"], naive).chunk, d["name"], blob, **kwargs)) |
|
|
|
for (docinfo, _), th in zip(files, threads): |
|
docs = [] |
|
doc = { |
|
"doc_id": docinfo["id"], |
|
"kb_id": [kb.id] |
|
} |
|
for ck in th.result(): |
|
d = deepcopy(doc) |
|
d.update(ck) |
|
md5 = hashlib.md5() |
|
md5.update((ck["content_with_weight"] + |
|
str(d["doc_id"])).encode("utf-8")) |
|
d["id"] = md5.hexdigest() |
|
d["create_time"] = str(datetime.now()).replace("T", " ")[:19] |
|
d["create_timestamp_flt"] = datetime.now().timestamp() |
|
if not d.get("image"): |
|
docs.append(d) |
|
continue |
|
|
|
output_buffer = BytesIO() |
|
if isinstance(d["image"], bytes): |
|
output_buffer = BytesIO(d["image"]) |
|
else: |
|
d["image"].save(output_buffer, format='JPEG') |
|
|
|
STORAGE_IMPL.put(kb.id, d["id"], output_buffer.getvalue()) |
|
d["img_id"] = "{}-{}".format(kb.id, d["id"]) |
|
d.pop("image", None) |
|
docs.append(d) |
|
|
|
parser_ids = {d["id"]: d["parser_id"] for d, _ in files} |
|
docids = [d["id"] for d, _ in files] |
|
chunk_counts = {id: 0 for id in docids} |
|
token_counts = {id: 0 for id in docids} |
|
es_bulk_size = 64 |
|
|
|
def embedding(doc_id, cnts, batch_size=16): |
|
nonlocal embd_mdl, chunk_counts, token_counts |
|
vects = [] |
|
for i in range(0, len(cnts), batch_size): |
|
vts, c = embd_mdl.encode(cnts[i: i + batch_size]) |
|
vects.extend(vts.tolist()) |
|
chunk_counts[doc_id] += len(cnts[i:i + batch_size]) |
|
token_counts[doc_id] += c |
|
return vects |
|
|
|
idxnm = search.index_name(kb.tenant_id) |
|
try_create_idx = True |
|
|
|
_, tenant = TenantService.get_by_id(kb.tenant_id) |
|
llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id) |
|
for doc_id in docids: |
|
cks = [c for c in docs if c["doc_id"] == doc_id] |
|
|
|
if parser_ids[doc_id] != ParserType.PICTURE.value: |
|
mindmap = MindMapExtractor(llm_bdl) |
|
try: |
|
mind_map = json.dumps(mindmap([c["content_with_weight"] for c in docs if c["doc_id"] == doc_id]).output, |
|
ensure_ascii=False, indent=2) |
|
if len(mind_map) < 32: raise Exception("Few content: " + mind_map) |
|
cks.append({ |
|
"id": get_uuid(), |
|
"doc_id": doc_id, |
|
"kb_id": [kb.id], |
|
"docnm_kwd": doc_nm[doc_id], |
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc_nm[doc_id])), |
|
"content_ltks": "", |
|
"content_with_weight": mind_map, |
|
"knowledge_graph_kwd": "mind_map" |
|
}) |
|
except Exception as e: |
|
logging.exception("Mind map generation error") |
|
|
|
vects = embedding(doc_id, [c["content_with_weight"] for c in cks]) |
|
assert len(cks) == len(vects) |
|
for i, d in enumerate(cks): |
|
v = vects[i] |
|
d["q_%d_vec" % len(v)] = v |
|
for b in range(0, len(cks), es_bulk_size): |
|
if try_create_idx: |
|
if not settings.docStoreConn.indexExist(idxnm, kb_id): |
|
settings.docStoreConn.createIdx(idxnm, kb_id, len(vects[0])) |
|
try_create_idx = False |
|
settings.docStoreConn.insert(cks[b:b + es_bulk_size], idxnm, kb_id) |
|
|
|
DocumentService.increment_chunk_num( |
|
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0) |
|
|
|
return [d["id"] for d, _ in files] |