|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import re |
|
from typing import Optional |
|
import threading |
|
import requests |
|
from huggingface_hub import snapshot_download |
|
from zhipuai import ZhipuAI |
|
import os |
|
from abc import ABC |
|
from ollama import Client |
|
import dashscope |
|
from openai import OpenAI |
|
import numpy as np |
|
import asyncio |
|
|
|
from api.settings import LIGHTEN |
|
from api.utils.file_utils import get_home_cache_dir |
|
from rag.utils import num_tokens_from_string, truncate |
|
import google.generativeai as genai |
|
import json |
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
def encode_queries(self, text: str): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
|
|
class DefaultEmbedding(Base): |
|
_model = None |
|
_model_lock = threading.Lock() |
|
def __init__(self, key, model_name, **kwargs): |
|
""" |
|
If you have trouble downloading HuggingFace models, -_^ this might help!! |
|
|
|
For Linux: |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
|
For Windows: |
|
Good luck |
|
^_- |
|
|
|
""" |
|
if not LIGHTEN and not DefaultEmbedding._model: |
|
with DefaultEmbedding._model_lock: |
|
from FlagEmbedding import FlagModel |
|
import torch |
|
if not DefaultEmbedding._model: |
|
try: |
|
DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), |
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", |
|
use_fp16=torch.cuda.is_available()) |
|
except Exception: |
|
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5", |
|
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), |
|
local_dir_use_symlinks=False) |
|
DefaultEmbedding._model = FlagModel(model_dir, |
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", |
|
use_fp16=torch.cuda.is_available()) |
|
self._model = DefaultEmbedding._model |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
texts = [truncate(t, 2048) for t in texts] |
|
token_count = 0 |
|
for t in texts: |
|
token_count += num_tokens_from_string(t) |
|
res = [] |
|
for i in range(0, len(texts), batch_size): |
|
res.extend(self._model.encode(texts[i:i + batch_size]).tolist()) |
|
return np.array(res), token_count |
|
|
|
def encode_queries(self, text: str): |
|
token_count = num_tokens_from_string(text) |
|
return self._model.encode_queries([text]).tolist()[0], token_count |
|
|
|
|
|
class OpenAIEmbed(Base): |
|
def __init__(self, key, model_name="text-embedding-ada-002", |
|
base_url="https://api.openai.com/v1"): |
|
if not base_url: |
|
base_url = "https://api.openai.com/v1" |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
texts = [truncate(t, 8191) for t in texts] |
|
res = self.client.embeddings.create(input=texts, |
|
model=self.model_name) |
|
return np.array([d.embedding for d in res.data] |
|
), res.usage.total_tokens |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings.create(input=[truncate(text, 8191)], |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class LocalAIEmbed(Base): |
|
def __init__(self, key, model_name, base_url): |
|
if not base_url: |
|
raise ValueError("Local embedding model url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key="empty", base_url=base_url) |
|
self.model_name = model_name.split("___")[0] |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embeddings.create(input=texts, model=self.model_name) |
|
return ( |
|
np.array([d.embedding for d in res.data]), |
|
1024, |
|
) |
|
|
|
def encode_queries(self, text): |
|
embds, cnt = self.encode([text]) |
|
return np.array(embds[0]), cnt |
|
|
|
|
|
class AzureEmbed(OpenAIEmbed): |
|
def __init__(self, key, model_name, **kwargs): |
|
from openai.lib.azure import AzureOpenAI |
|
api_key = json.loads(key).get('api_key', '') |
|
api_version = json.loads(key).get('api_version', '2024-02-01') |
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version) |
|
self.model_name = model_name |
|
|
|
|
|
class BaiChuanEmbed(OpenAIEmbed): |
|
def __init__(self, key, |
|
model_name='Baichuan-Text-Embedding', |
|
base_url='https://api.baichuan-ai.com/v1'): |
|
if not base_url: |
|
base_url = "https://api.baichuan-ai.com/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class QWenEmbed(Base): |
|
def __init__(self, key, model_name="text_embedding_v2", **kwargs): |
|
dashscope.api_key = key |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=10): |
|
import dashscope |
|
batch_size = min(batch_size, 4) |
|
try: |
|
res = [] |
|
token_count = 0 |
|
texts = [truncate(t, 2048) for t in texts] |
|
for i in range(0, len(texts), batch_size): |
|
resp = dashscope.TextEmbedding.call( |
|
model=self.model_name, |
|
input=texts[i:i + batch_size], |
|
text_type="document" |
|
) |
|
embds = [[] for _ in range(len(resp["output"]["embeddings"]))] |
|
for e in resp["output"]["embeddings"]: |
|
embds[e["text_index"]] = e["embedding"] |
|
res.extend(embds) |
|
token_count += resp["usage"]["total_tokens"] |
|
return np.array(res), token_count |
|
except Exception as e: |
|
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name) |
|
return np.array([]), 0 |
|
|
|
def encode_queries(self, text): |
|
try: |
|
resp = dashscope.TextEmbedding.call( |
|
model=self.model_name, |
|
input=text[:2048], |
|
text_type="query" |
|
) |
|
return np.array(resp["output"]["embeddings"][0] |
|
["embedding"]), resp["usage"]["total_tokens"] |
|
except Exception: |
|
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name) |
|
return np.array([]), 0 |
|
|
|
|
|
class ZhipuEmbed(Base): |
|
def __init__(self, key, model_name="embedding-2", **kwargs): |
|
self.client = ZhipuAI(api_key=key) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
arr = [] |
|
tks_num = 0 |
|
for txt in texts: |
|
res = self.client.embeddings.create(input=txt, |
|
model=self.model_name) |
|
arr.append(res.data[0].embedding) |
|
tks_num += res.usage.total_tokens |
|
return np.array(arr), tks_num |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings.create(input=text, |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class OllamaEmbed(Base): |
|
def __init__(self, key, model_name, **kwargs): |
|
self.client = Client(host=kwargs["base_url"]) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
arr = [] |
|
tks_num = 0 |
|
for txt in texts: |
|
res = self.client.embeddings(prompt=txt, |
|
model=self.model_name) |
|
arr.append(res["embedding"]) |
|
tks_num += 128 |
|
return np.array(arr), tks_num |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings(prompt=text, |
|
model=self.model_name) |
|
return np.array(res["embedding"]), 128 |
|
|
|
|
|
class FastEmbed(Base): |
|
_model = None |
|
|
|
def __init__( |
|
self, |
|
key: Optional[str] = None, |
|
model_name: str = "BAAI/bge-small-en-v1.5", |
|
cache_dir: Optional[str] = None, |
|
threads: Optional[int] = None, |
|
**kwargs, |
|
): |
|
if not LIGHTEN and not FastEmbed._model: |
|
from fastembed import TextEmbedding |
|
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs) |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
|
|
|
|
encodings = self._model.model.tokenizer.encode_batch(texts) |
|
total_tokens = sum(len(e) for e in encodings) |
|
|
|
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)] |
|
|
|
return np.array(embeddings), total_tokens |
|
|
|
def encode_queries(self, text: str): |
|
|
|
|
|
encoding = self._model.model.tokenizer.encode(text) |
|
embedding = next(self._model.query_embed(text)).tolist() |
|
|
|
return np.array(embedding), len(encoding.ids) |
|
|
|
|
|
class XinferenceEmbed(Base): |
|
def __init__(self, key, model_name="", base_url=""): |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embeddings.create(input=texts, |
|
model=self.model_name) |
|
return np.array([d.embedding for d in res.data] |
|
), res.usage.total_tokens |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings.create(input=[text], |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class YoudaoEmbed(Base): |
|
_client = None |
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs): |
|
if not LIGHTEN and not YoudaoEmbed._client: |
|
from BCEmbedding import EmbeddingModel as qanthing |
|
try: |
|
logging.info("LOADING BCE...") |
|
YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join( |
|
get_home_cache_dir(), |
|
"bce-embedding-base_v1")) |
|
except Exception: |
|
YoudaoEmbed._client = qanthing( |
|
model_name_or_path=model_name.replace( |
|
"maidalun1020", "InfiniFlow")) |
|
|
|
def encode(self, texts: list, batch_size=10): |
|
res = [] |
|
token_count = 0 |
|
for t in texts: |
|
token_count += num_tokens_from_string(t) |
|
for i in range(0, len(texts), batch_size): |
|
embds = YoudaoEmbed._client.encode(texts[i:i + batch_size]) |
|
res.extend(embds) |
|
return np.array(res), token_count |
|
|
|
def encode_queries(self, text): |
|
embds = YoudaoEmbed._client.encode([text]) |
|
return np.array(embds[0]), num_tokens_from_string(text) |
|
|
|
|
|
class JinaEmbed(Base): |
|
def __init__(self, key, model_name="jina-embeddings-v2-base-zh", |
|
base_url="https://api.jina.ai/v1/embeddings"): |
|
|
|
self.base_url = "https://api.jina.ai/v1/embeddings" |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}" |
|
} |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=None): |
|
texts = [truncate(t, 8196) for t in texts] |
|
data = { |
|
"model": self.model_name, |
|
"input": texts, |
|
'encoding_type': 'float' |
|
} |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
return np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"] |
|
|
|
def encode_queries(self, text): |
|
embds, cnt = self.encode([text]) |
|
return np.array(embds[0]), cnt |
|
|
|
|
|
class InfinityEmbed(Base): |
|
_model = None |
|
|
|
def __init__( |
|
self, |
|
model_names: list[str] = ("BAAI/bge-small-en-v1.5",), |
|
engine_kwargs: dict = {}, |
|
key = None, |
|
): |
|
|
|
from infinity_emb import EngineArgs |
|
from infinity_emb.engine import AsyncEngineArray |
|
|
|
self._default_model = model_names[0] |
|
self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names]) |
|
|
|
async def _embed(self, sentences: list[str], model_name: str = ""): |
|
if not model_name: |
|
model_name = self._default_model |
|
engine = self.engine_array[model_name] |
|
was_already_running = engine.is_running |
|
if not was_already_running: |
|
await engine.astart() |
|
embeddings, usage = await engine.embed(sentences=sentences) |
|
if not was_already_running: |
|
await engine.astop() |
|
return embeddings, usage |
|
|
|
def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]: |
|
|
|
|
|
embeddings, usage = asyncio.run(self._embed(texts, model_name)) |
|
return np.array(embeddings), usage |
|
|
|
def encode_queries(self, text: str) -> tuple[np.ndarray, int]: |
|
|
|
|
|
return self.encode([text]) |
|
|
|
|
|
class MistralEmbed(Base): |
|
def __init__(self, key, model_name="mistral-embed", |
|
base_url=None): |
|
from mistralai.client import MistralClient |
|
self.client = MistralClient(api_key=key) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
texts = [truncate(t, 8196) for t in texts] |
|
res = self.client.embeddings(input=texts, |
|
model=self.model_name) |
|
return np.array([d.embedding for d in res.data] |
|
), res.usage.total_tokens |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings(input=[truncate(text, 8196)], |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class BedrockEmbed(Base): |
|
def __init__(self, key, model_name, |
|
**kwargs): |
|
import boto3 |
|
self.bedrock_ak = json.loads(key).get('bedrock_ak', '') |
|
self.bedrock_sk = json.loads(key).get('bedrock_sk', '') |
|
self.bedrock_region = json.loads(key).get('bedrock_region', '') |
|
self.model_name = model_name |
|
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region, |
|
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
texts = [truncate(t, 8196) for t in texts] |
|
embeddings = [] |
|
token_count = 0 |
|
for text in texts: |
|
if self.model_name.split('.')[0] == 'amazon': |
|
body = {"inputText": text} |
|
elif self.model_name.split('.')[0] == 'cohere': |
|
body = {"texts": [text], "input_type": 'search_document'} |
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body)) |
|
model_response = json.loads(response["body"].read()) |
|
embeddings.extend([model_response["embedding"]]) |
|
token_count += num_tokens_from_string(text) |
|
|
|
return np.array(embeddings), token_count |
|
|
|
def encode_queries(self, text): |
|
|
|
embeddings = [] |
|
token_count = num_tokens_from_string(text) |
|
if self.model_name.split('.')[0] == 'amazon': |
|
body = {"inputText": truncate(text, 8196)} |
|
elif self.model_name.split('.')[0] == 'cohere': |
|
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'} |
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body)) |
|
model_response = json.loads(response["body"].read()) |
|
embeddings.extend(model_response["embedding"]) |
|
|
|
return np.array(embeddings), token_count |
|
|
|
class GeminiEmbed(Base): |
|
def __init__(self, key, model_name='models/text-embedding-004', |
|
**kwargs): |
|
genai.configure(api_key=key) |
|
self.model_name = 'models/' + model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
texts = [truncate(t, 2048) for t in texts] |
|
token_count = sum(num_tokens_from_string(text) for text in texts) |
|
result = genai.embed_content( |
|
model=self.model_name, |
|
content=texts, |
|
task_type="retrieval_document", |
|
title="Embedding of list of strings") |
|
return np.array(result['embedding']),token_count |
|
|
|
def encode_queries(self, text): |
|
result = genai.embed_content( |
|
model=self.model_name, |
|
content=truncate(text,2048), |
|
task_type="retrieval_document", |
|
title="Embedding of single string") |
|
token_count = num_tokens_from_string(text) |
|
return np.array(result['embedding']),token_count |
|
|
|
class NvidiaEmbed(Base): |
|
def __init__( |
|
self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings" |
|
): |
|
if not base_url: |
|
base_url = "https://integrate.api.nvidia.com/v1/embeddings" |
|
self.api_key = key |
|
self.base_url = base_url |
|
self.headers = { |
|
"accept": "application/json", |
|
"Content-Type": "application/json", |
|
"authorization": f"Bearer {self.api_key}", |
|
} |
|
self.model_name = model_name |
|
if model_name == "nvidia/embed-qa-4": |
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings" |
|
self.model_name = "NV-Embed-QA" |
|
if model_name == "snowflake/arctic-embed-l": |
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings" |
|
|
|
def encode(self, texts: list, batch_size=None): |
|
payload = { |
|
"input": texts, |
|
"input_type": "query", |
|
"model": self.model_name, |
|
"encoding_format": "float", |
|
"truncate": "END", |
|
} |
|
res = requests.post(self.base_url, headers=self.headers, json=payload).json() |
|
return ( |
|
np.array([d["embedding"] for d in res["data"]]), |
|
res["usage"]["total_tokens"], |
|
) |
|
|
|
def encode_queries(self, text): |
|
embds, cnt = self.encode([text]) |
|
return np.array(embds[0]), cnt |
|
|
|
|
|
class LmStudioEmbed(LocalAIEmbed): |
|
def __init__(self, key, model_name, base_url): |
|
if not base_url: |
|
raise ValueError("Local llm url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url) |
|
self.model_name = model_name |
|
|
|
|
|
class OpenAI_APIEmbed(OpenAIEmbed): |
|
def __init__(self, key, model_name, base_url): |
|
if not base_url: |
|
raise ValueError("url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name.split("___")[0] |
|
|
|
|
|
class CoHereEmbed(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
from cohere import Client |
|
|
|
self.client = Client(api_key=key) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embed( |
|
texts=texts, |
|
model=self.model_name, |
|
input_type="search_query", |
|
embedding_types=["float"], |
|
) |
|
return np.array([d for d in res.embeddings.float]), int( |
|
res.meta.billed_units.input_tokens |
|
) |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embed( |
|
texts=[text], |
|
model=self.model_name, |
|
input_type="search_query", |
|
embedding_types=["float"], |
|
) |
|
return np.array(res.embeddings.float[0]), int( |
|
res.meta.billed_units.input_tokens |
|
) |
|
|
|
|
|
class TogetherAIEmbed(OllamaEmbed): |
|
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"): |
|
if not base_url: |
|
base_url = "https://api.together.xyz/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class PerfXCloudEmbed(OpenAIEmbed): |
|
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"): |
|
if not base_url: |
|
base_url = "https://cloud.perfxlab.cn/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class UpstageEmbed(OpenAIEmbed): |
|
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"): |
|
if not base_url: |
|
base_url = "https://api.upstage.ai/v1/solar" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class SILICONFLOWEmbed(Base): |
|
def __init__( |
|
self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings" |
|
): |
|
if not base_url: |
|
base_url = "https://api.siliconflow.cn/v1/embeddings" |
|
self.headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"authorization": f"Bearer {key}", |
|
} |
|
self.base_url = base_url |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
payload = { |
|
"model": self.model_name, |
|
"input": texts, |
|
"encoding_format": "float", |
|
} |
|
res = requests.post(self.base_url, json=payload, headers=self.headers).json() |
|
return ( |
|
np.array([d["embedding"] for d in res["data"]]), |
|
res["usage"]["total_tokens"], |
|
) |
|
|
|
def encode_queries(self, text): |
|
payload = { |
|
"model": self.model_name, |
|
"input": text, |
|
"encoding_format": "float", |
|
} |
|
res = requests.post(self.base_url, json=payload, headers=self.headers).json() |
|
return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"] |
|
|
|
|
|
class ReplicateEmbed(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
from replicate.client import Client |
|
|
|
self.model_name = model_name |
|
self.client = Client(api_token=key) |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.run(self.model_name, input={"texts": json.dumps(texts)}) |
|
return np.array(res), sum([num_tokens_from_string(text) for text in texts]) |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embed(self.model_name, input={"texts": [text]}) |
|
return np.array(res), num_tokens_from_string(text) |
|
|
|
|
|
class BaiduYiyanEmbed(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
import qianfan |
|
|
|
key = json.loads(key) |
|
ak = key.get("yiyan_ak", "") |
|
sk = key.get("yiyan_sk", "") |
|
self.client = qianfan.Embedding(ak=ak, sk=sk) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.do(model=self.model_name, texts=texts).body |
|
return ( |
|
np.array([r["embedding"] for r in res["data"]]), |
|
res["usage"]["total_tokens"], |
|
) |
|
|
|
def encode_queries(self, text): |
|
res = self.client.do(model=self.model_name, texts=[text]).body |
|
return ( |
|
np.array([r["embedding"] for r in res["data"]]), |
|
res["usage"]["total_tokens"], |
|
) |
|
|
|
|
|
class VoyageEmbed(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
import voyageai |
|
|
|
self.client = voyageai.Client(api_key=key) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embed( |
|
texts=texts, model=self.model_name, input_type="document" |
|
) |
|
return np.array(res.embeddings), res.total_tokens |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embed |
|
res = self.client.embed( |
|
texts=text, model=self.model_name, input_type="query" |
|
) |
|
return np.array(res.embeddings), res.total_tokens |
|
|
|
|
|
class HuggingFaceEmbed(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
if not model_name: |
|
raise ValueError("Model name cannot be None") |
|
self.key = key |
|
self.model_name = model_name |
|
self.base_url = base_url or "http://127.0.0.1:8080" |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
embeddings = [] |
|
for text in texts: |
|
response = requests.post( |
|
f"{self.base_url}/embed", |
|
json={"inputs": text}, |
|
headers={'Content-Type': 'application/json'} |
|
) |
|
if response.status_code == 200: |
|
embedding = response.json() |
|
embeddings.append(embedding[0]) |
|
else: |
|
raise Exception(f"Error: {response.status_code} - {response.text}") |
|
return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts]) |
|
|
|
def encode_queries(self, text): |
|
response = requests.post( |
|
f"{self.base_url}/embed", |
|
json={"inputs": text}, |
|
headers={'Content-Type': 'application/json'} |
|
) |
|
if response.status_code == 200: |
|
embedding = response.json() |
|
return np.array(embedding[0]), num_tokens_from_string(text) |
|
else: |
|
raise Exception(f"Error: {response.status_code} - {response.text}") |
|
|
|
|