ragflow / rag /nlp /search.py
zhichyu's picture
Rework logging (#3358)
22fe41e
raw
history blame
16.1 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import json
from typing import List, Optional, Dict, Union
from dataclasses import dataclass
from api.utils.log_utils import logger
from rag.utils import rmSpace
from rag.nlp import rag_tokenizer, query
import numpy as np
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr
def index_name(uid): return f"ragflow_{uid}"
class Dealer:
def __init__(self, dataStore: DocStoreConnection):
self.qryr = query.FulltextQueryer()
self.dataStore = dataStore
@dataclass
class SearchResult:
total: int
ids: List[str]
query_vector: List[float] = None
field: Optional[Dict] = None
highlight: Optional[Dict] = None
aggregation: Union[List, Dict, None] = None
keywords: Optional[List[str]] = None
group_docs: List[List] = None
def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1):
qv, _ = emb_mdl.encode_queries(txt)
embedding_data = [float(v) for v in qv]
vector_column_name = f"q_{len(embedding_data)}_vec"
return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})
def get_filters(self, req):
condition = dict()
for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items():
if key in req and req[key] is not None:
condition[field] = req[key]
# TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns.
for key in ["knowledge_graph_kwd"]:
if key in req and req[key] is not None:
condition[key] = req[key]
return condition
def search(self, req, idx_names: list[str], kb_ids: list[str], emb_mdl=None, highlight = False):
filters = self.get_filters(req)
orderBy = OrderByExpr()
pg = int(req.get("page", 1)) - 1
topk = int(req.get("topk", 1024))
ps = int(req.get("size", topk))
offset, limit = pg * ps, (pg + 1) * ps
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
"doc_id", "position_list", "knowledge_graph_kwd",
"available_int", "content_with_weight"])
kwds = set([])
qst = req.get("question", "")
q_vec = []
if not qst:
if req.get("sort"):
orderBy.desc("create_timestamp_flt")
res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
logger.info("Dealer.search TOTAL: {}".format(total))
else:
highlightFields = ["content_ltks", "title_tks"] if highlight else []
matchText, keywords = self.qryr.question(qst, min_match=0.3)
if emb_mdl is None:
matchExprs = [matchText]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
logger.info("Dealer.search TOTAL: {}".format(total))
else:
matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1))
q_vec = matchDense.embedding_data
src.append(f"q_{len(q_vec)}_vec")
fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"})
matchExprs = [matchText, matchDense, fusionExpr]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
logger.info("Dealer.search TOTAL: {}".format(total))
# If result is empty, try again with lower min_match
if total == 0:
matchText, _ = self.qryr.question(qst, min_match=0.1)
if "doc_ids" in filters:
del filters["doc_ids"]
matchDense.extra_options["similarity"] = 0.17
res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
logger.info("Dealer.search 2 TOTAL: {}".format(total))
for k in keywords:
kwds.add(k)
for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
logger.info(f"TOTAL: {total}")
ids=self.dataStore.getChunkIds(res)
keywords=list(kwds)
highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight")
aggs = self.dataStore.getAggregation(res, "docnm_kwd")
return self.SearchResult(
total=total,
ids=ids,
query_vector=q_vec,
aggregation=aggs,
highlight=highlight,
field=self.dataStore.getFields(res, src),
keywords=keywords
)
@staticmethod
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
def insert_citations(self, answer, chunks, chunk_v,
embd_mdl, tkweight=0.1, vtweight=0.9):
assert len(chunks) == len(chunk_v)
if not chunks:
return answer, set([])
pieces = re.split(r"(```)", answer)
if len(pieces) >= 3:
i = 0
pieces_ = []
while i < len(pieces):
if pieces[i] == "```":
st = i
i += 1
while i < len(pieces) and pieces[i] != "```":
i += 1
if i < len(pieces):
i += 1
pieces_.append("".join(pieces[st: i]) + "\n")
else:
pieces_.extend(
re.split(
r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
pieces[i]))
i += 1
pieces = pieces_
else:
pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
pieces[i - 1] += pieces[i][0]
pieces[i] = pieces[i][1:]
idx = []
pieces_ = []
for i, t in enumerate(pieces):
if len(t) < 5:
continue
idx.append(i)
pieces_.append(t)
logger.info("{} => {}".format(answer, pieces_))
if not pieces_:
return answer, set([])
ans_v, _ = embd_mdl.encode(pieces_)
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
len(ans_v[0]), len(chunk_v[0]))
chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split(" ")
for ck in chunks]
cites = {}
thr = 0.63
while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
for i, a in enumerate(pieces_):
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
chunk_v,
rag_tokenizer.tokenize(
self.qryr.rmWWW(pieces_[i])).split(" "),
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
logger.info("{} SIM: {}".format(pieces_[i], mx))
if mx < thr:
continue
cites[idx[i]] = list(
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
thr *= 0.8
res = ""
seted = set([])
for i, p in enumerate(pieces):
res += p
if i not in idx:
continue
if i not in cites:
continue
for c in cites[i]:
assert int(c) < len(chunk_v)
for c in cites[i]:
if c in seted:
continue
res += f" ##{c}$$"
seted.add(c)
return res, seted
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
_, keywords = self.qryr.question(query)
vector_size = len(sres.query_vector)
vector_column = f"q_{vector_size}_vec"
zero_vector = [0.0] * vector_size
ins_embd = []
for chunk_id in sres.ids:
vector = sres.field[chunk_id].get(vector_column, zero_vector)
if isinstance(vector, str):
vector = [float(v) for v in vector.split("\t")]
ins_embd.append(vector)
if not ins_embd:
return [], [], []
for i in sres.ids:
if isinstance(sres.field[i].get("important_kwd", []), str):
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
ins_tw = []
for i in sres.ids:
content_ltks = sres.field[i][cfield].split(" ")
title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t]
important_kwd = sres.field[i].get("important_kwd", [])
tks = content_ltks + title_tks + important_kwd
ins_tw.append(tks)
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
keywords,
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim
def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
_, keywords = self.qryr.question(query)
for i in sres.ids:
if isinstance(sres.field[i].get("important_kwd", []), str):
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
ins_tw = []
for i in sres.ids:
content_ltks = sres.field[i][cfield].split(" ")
title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t]
important_kwd = sres.field[i].get("important_kwd", [])
tks = content_ltks + title_tks + important_kwd
ins_tw.append(tks)
tksim = self.qryr.token_similarity(keywords, ins_tw)
vtsim,_ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw])
return tkweight*np.array(tksim) + vtweight*vtsim, tksim, vtsim
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
return self.qryr.hybrid_similarity(ans_embd,
ins_embd,
rag_tokenizer.tokenize(ans).split(" "),
rag_tokenizer.tokenize(inst).split(" "))
def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None, highlight=False):
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question:
return ranks
RERANK_PAGE_LIMIT = 3
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": max(page_size*RERANK_PAGE_LIMIT, 128),
"question": question, "vector": True, "topk": top,
"similarity": similarity_threshold,
"available_int": 1}
if page > RERANK_PAGE_LIMIT:
req["page"] = page
req["size"] = page_size
if isinstance(tenant_ids, str):
tenant_ids = tenant_ids.split(",")
sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight)
ranks["total"] = sres.total
if page <= RERANK_PAGE_LIMIT:
if rerank_mdl:
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
else:
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim * -1)[(page-1)*page_size:page*page_size]
else:
sim = tsim = vsim = [1]*len(sres.ids)
idx = list(range(len(sres.ids)))
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
for i in idx:
if sim[i] < similarity_threshold:
break
if len(ranks["chunks"]) >= page_size:
if aggs:
continue
break
id = sres.ids[i]
chunk = sres.field[id]
dnm = chunk["docnm_kwd"]
did = chunk["doc_id"]
position_list = chunk.get("position_list", "[]")
if not position_list:
position_list = "[]"
d = {
"chunk_id": id,
"content_ltks": chunk["content_ltks"],
"content_with_weight": chunk["content_with_weight"],
"doc_id": chunk["doc_id"],
"docnm_kwd": dnm,
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": chunk.get(vector_column, zero_vector),
"positions": json.loads(position_list)
}
if highlight:
if id in sres.highlight:
d["highlight"] = rmSpace(sres.highlight[id])
else:
d["highlight"] = d["content_with_weight"]
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
ranks["doc_aggs"] = [{"doc_name": k,
"doc_id": v["doc_id"],
"count": v["count"]} for k,
v in sorted(ranks["doc_aggs"].items(),
key=lambda x:x[1]["count"] * -1)]
return ranks
def sql_retrieval(self, sql, fetch_size=128, format="json"):
tbl = self.dataStore.sql(sql, fetch_size, format)
return tbl
def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
condition = {"doc_id": doc_id}
res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), 0, max_count, index_name(tenant_id), kb_ids)
dict_chunks = self.dataStore.getFields(res, fields)
return dict_chunks.values()