|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
import json |
|
from typing import List, Optional, Dict, Union |
|
from dataclasses import dataclass |
|
|
|
from api.utils.log_utils import logger |
|
from rag.utils import rmSpace |
|
from rag.nlp import rag_tokenizer, query |
|
import numpy as np |
|
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr |
|
|
|
|
|
def index_name(uid): return f"ragflow_{uid}" |
|
|
|
|
|
class Dealer: |
|
def __init__(self, dataStore: DocStoreConnection): |
|
self.qryr = query.FulltextQueryer() |
|
self.dataStore = dataStore |
|
|
|
@dataclass |
|
class SearchResult: |
|
total: int |
|
ids: List[str] |
|
query_vector: List[float] = None |
|
field: Optional[Dict] = None |
|
highlight: Optional[Dict] = None |
|
aggregation: Union[List, Dict, None] = None |
|
keywords: Optional[List[str]] = None |
|
group_docs: List[List] = None |
|
|
|
def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1): |
|
qv, _ = emb_mdl.encode_queries(txt) |
|
embedding_data = [float(v) for v in qv] |
|
vector_column_name = f"q_{len(embedding_data)}_vec" |
|
return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity}) |
|
|
|
def get_filters(self, req): |
|
condition = dict() |
|
for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items(): |
|
if key in req and req[key] is not None: |
|
condition[field] = req[key] |
|
|
|
for key in ["knowledge_graph_kwd"]: |
|
if key in req and req[key] is not None: |
|
condition[key] = req[key] |
|
return condition |
|
|
|
def search(self, req, idx_names: list[str], kb_ids: list[str], emb_mdl=None, highlight = False): |
|
filters = self.get_filters(req) |
|
orderBy = OrderByExpr() |
|
|
|
pg = int(req.get("page", 1)) - 1 |
|
topk = int(req.get("topk", 1024)) |
|
ps = int(req.get("size", topk)) |
|
offset, limit = pg * ps, (pg + 1) * ps |
|
|
|
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", |
|
"doc_id", "position_list", "knowledge_graph_kwd", |
|
"available_int", "content_with_weight"]) |
|
kwds = set([]) |
|
|
|
qst = req.get("question", "") |
|
q_vec = [] |
|
if not qst: |
|
if req.get("sort"): |
|
orderBy.desc("create_timestamp_flt") |
|
res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids) |
|
total=self.dataStore.getTotal(res) |
|
logger.info("Dealer.search TOTAL: {}".format(total)) |
|
else: |
|
highlightFields = ["content_ltks", "title_tks"] if highlight else [] |
|
matchText, keywords = self.qryr.question(qst, min_match=0.3) |
|
if emb_mdl is None: |
|
matchExprs = [matchText] |
|
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids) |
|
total=self.dataStore.getTotal(res) |
|
logger.info("Dealer.search TOTAL: {}".format(total)) |
|
else: |
|
matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1)) |
|
q_vec = matchDense.embedding_data |
|
src.append(f"q_{len(q_vec)}_vec") |
|
|
|
fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"}) |
|
matchExprs = [matchText, matchDense, fusionExpr] |
|
|
|
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids) |
|
total=self.dataStore.getTotal(res) |
|
logger.info("Dealer.search TOTAL: {}".format(total)) |
|
|
|
|
|
if total == 0: |
|
matchText, _ = self.qryr.question(qst, min_match=0.1) |
|
if "doc_ids" in filters: |
|
del filters["doc_ids"] |
|
matchDense.extra_options["similarity"] = 0.17 |
|
res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], orderBy, offset, limit, idx_names, kb_ids) |
|
total=self.dataStore.getTotal(res) |
|
logger.info("Dealer.search 2 TOTAL: {}".format(total)) |
|
|
|
for k in keywords: |
|
kwds.add(k) |
|
for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "): |
|
if len(kk) < 2: |
|
continue |
|
if kk in kwds: |
|
continue |
|
kwds.add(kk) |
|
|
|
logger.info(f"TOTAL: {total}") |
|
ids=self.dataStore.getChunkIds(res) |
|
keywords=list(kwds) |
|
highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight") |
|
aggs = self.dataStore.getAggregation(res, "docnm_kwd") |
|
return self.SearchResult( |
|
total=total, |
|
ids=ids, |
|
query_vector=q_vec, |
|
aggregation=aggs, |
|
highlight=highlight, |
|
field=self.dataStore.getFields(res, src), |
|
keywords=keywords |
|
) |
|
|
|
@staticmethod |
|
def trans2floats(txt): |
|
return [float(t) for t in txt.split("\t")] |
|
|
|
def insert_citations(self, answer, chunks, chunk_v, |
|
embd_mdl, tkweight=0.1, vtweight=0.9): |
|
assert len(chunks) == len(chunk_v) |
|
if not chunks: |
|
return answer, set([]) |
|
pieces = re.split(r"(```)", answer) |
|
if len(pieces) >= 3: |
|
i = 0 |
|
pieces_ = [] |
|
while i < len(pieces): |
|
if pieces[i] == "```": |
|
st = i |
|
i += 1 |
|
while i < len(pieces) and pieces[i] != "```": |
|
i += 1 |
|
if i < len(pieces): |
|
i += 1 |
|
pieces_.append("".join(pieces[st: i]) + "\n") |
|
else: |
|
pieces_.extend( |
|
re.split( |
|
r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", |
|
pieces[i])) |
|
i += 1 |
|
pieces = pieces_ |
|
else: |
|
pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer) |
|
for i in range(1, len(pieces)): |
|
if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]): |
|
pieces[i - 1] += pieces[i][0] |
|
pieces[i] = pieces[i][1:] |
|
idx = [] |
|
pieces_ = [] |
|
for i, t in enumerate(pieces): |
|
if len(t) < 5: |
|
continue |
|
idx.append(i) |
|
pieces_.append(t) |
|
logger.info("{} => {}".format(answer, pieces_)) |
|
if not pieces_: |
|
return answer, set([]) |
|
|
|
ans_v, _ = embd_mdl.encode(pieces_) |
|
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format( |
|
len(ans_v[0]), len(chunk_v[0])) |
|
|
|
chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split(" ") |
|
for ck in chunks] |
|
cites = {} |
|
thr = 0.63 |
|
while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks: |
|
for i, a in enumerate(pieces_): |
|
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i], |
|
chunk_v, |
|
rag_tokenizer.tokenize( |
|
self.qryr.rmWWW(pieces_[i])).split(" "), |
|
chunks_tks, |
|
tkweight, vtweight) |
|
mx = np.max(sim) * 0.99 |
|
logger.info("{} SIM: {}".format(pieces_[i], mx)) |
|
if mx < thr: |
|
continue |
|
cites[idx[i]] = list( |
|
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4] |
|
thr *= 0.8 |
|
|
|
res = "" |
|
seted = set([]) |
|
for i, p in enumerate(pieces): |
|
res += p |
|
if i not in idx: |
|
continue |
|
if i not in cites: |
|
continue |
|
for c in cites[i]: |
|
assert int(c) < len(chunk_v) |
|
for c in cites[i]: |
|
if c in seted: |
|
continue |
|
res += f" ##{c}$$" |
|
seted.add(c) |
|
|
|
return res, seted |
|
|
|
def rerank(self, sres, query, tkweight=0.3, |
|
vtweight=0.7, cfield="content_ltks"): |
|
_, keywords = self.qryr.question(query) |
|
vector_size = len(sres.query_vector) |
|
vector_column = f"q_{vector_size}_vec" |
|
zero_vector = [0.0] * vector_size |
|
ins_embd = [] |
|
for chunk_id in sres.ids: |
|
vector = sres.field[chunk_id].get(vector_column, zero_vector) |
|
if isinstance(vector, str): |
|
vector = [float(v) for v in vector.split("\t")] |
|
ins_embd.append(vector) |
|
if not ins_embd: |
|
return [], [], [] |
|
|
|
for i in sres.ids: |
|
if isinstance(sres.field[i].get("important_kwd", []), str): |
|
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]] |
|
ins_tw = [] |
|
for i in sres.ids: |
|
content_ltks = sres.field[i][cfield].split(" ") |
|
title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t] |
|
important_kwd = sres.field[i].get("important_kwd", []) |
|
tks = content_ltks + title_tks + important_kwd |
|
ins_tw.append(tks) |
|
|
|
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector, |
|
ins_embd, |
|
keywords, |
|
ins_tw, tkweight, vtweight) |
|
return sim, tksim, vtsim |
|
|
|
def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3, |
|
vtweight=0.7, cfield="content_ltks"): |
|
_, keywords = self.qryr.question(query) |
|
|
|
for i in sres.ids: |
|
if isinstance(sres.field[i].get("important_kwd", []), str): |
|
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]] |
|
ins_tw = [] |
|
for i in sres.ids: |
|
content_ltks = sres.field[i][cfield].split(" ") |
|
title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t] |
|
important_kwd = sres.field[i].get("important_kwd", []) |
|
tks = content_ltks + title_tks + important_kwd |
|
ins_tw.append(tks) |
|
|
|
tksim = self.qryr.token_similarity(keywords, ins_tw) |
|
vtsim,_ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw]) |
|
|
|
return tkweight*np.array(tksim) + vtweight*vtsim, tksim, vtsim |
|
|
|
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst): |
|
return self.qryr.hybrid_similarity(ans_embd, |
|
ins_embd, |
|
rag_tokenizer.tokenize(ans).split(" "), |
|
rag_tokenizer.tokenize(inst).split(" ")) |
|
|
|
def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2, |
|
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None, highlight=False): |
|
ranks = {"total": 0, "chunks": [], "doc_aggs": {}} |
|
if not question: |
|
return ranks |
|
|
|
RERANK_PAGE_LIMIT = 3 |
|
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": max(page_size*RERANK_PAGE_LIMIT, 128), |
|
"question": question, "vector": True, "topk": top, |
|
"similarity": similarity_threshold, |
|
"available_int": 1} |
|
|
|
if page > RERANK_PAGE_LIMIT: |
|
req["page"] = page |
|
req["size"] = page_size |
|
|
|
if isinstance(tenant_ids, str): |
|
tenant_ids = tenant_ids.split(",") |
|
|
|
sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight) |
|
ranks["total"] = sres.total |
|
|
|
if page <= RERANK_PAGE_LIMIT: |
|
if rerank_mdl: |
|
sim, tsim, vsim = self.rerank_by_model(rerank_mdl, |
|
sres, question, 1 - vector_similarity_weight, vector_similarity_weight) |
|
else: |
|
sim, tsim, vsim = self.rerank( |
|
sres, question, 1 - vector_similarity_weight, vector_similarity_weight) |
|
idx = np.argsort(sim * -1)[(page-1)*page_size:page*page_size] |
|
else: |
|
sim = tsim = vsim = [1]*len(sres.ids) |
|
idx = list(range(len(sres.ids))) |
|
|
|
dim = len(sres.query_vector) |
|
vector_column = f"q_{dim}_vec" |
|
zero_vector = [0.0] * dim |
|
for i in idx: |
|
if sim[i] < similarity_threshold: |
|
break |
|
if len(ranks["chunks"]) >= page_size: |
|
if aggs: |
|
continue |
|
break |
|
id = sres.ids[i] |
|
chunk = sres.field[id] |
|
dnm = chunk["docnm_kwd"] |
|
did = chunk["doc_id"] |
|
position_list = chunk.get("position_list", "[]") |
|
if not position_list: |
|
position_list = "[]" |
|
d = { |
|
"chunk_id": id, |
|
"content_ltks": chunk["content_ltks"], |
|
"content_with_weight": chunk["content_with_weight"], |
|
"doc_id": chunk["doc_id"], |
|
"docnm_kwd": dnm, |
|
"kb_id": chunk["kb_id"], |
|
"important_kwd": chunk.get("important_kwd", []), |
|
"image_id": chunk.get("img_id", ""), |
|
"similarity": sim[i], |
|
"vector_similarity": vsim[i], |
|
"term_similarity": tsim[i], |
|
"vector": chunk.get(vector_column, zero_vector), |
|
"positions": json.loads(position_list) |
|
} |
|
if highlight: |
|
if id in sres.highlight: |
|
d["highlight"] = rmSpace(sres.highlight[id]) |
|
else: |
|
d["highlight"] = d["content_with_weight"] |
|
ranks["chunks"].append(d) |
|
if dnm not in ranks["doc_aggs"]: |
|
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0} |
|
ranks["doc_aggs"][dnm]["count"] += 1 |
|
ranks["doc_aggs"] = [{"doc_name": k, |
|
"doc_id": v["doc_id"], |
|
"count": v["count"]} for k, |
|
v in sorted(ranks["doc_aggs"].items(), |
|
key=lambda x:x[1]["count"] * -1)] |
|
|
|
return ranks |
|
|
|
def sql_retrieval(self, sql, fetch_size=128, format="json"): |
|
tbl = self.dataStore.sql(sql, fetch_size, format) |
|
return tbl |
|
|
|
def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]): |
|
condition = {"doc_id": doc_id} |
|
res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), 0, max_count, index_name(tenant_id), kb_ids) |
|
dict_chunks = self.dataStore.getFields(res, fields) |
|
return dict_chunks.values() |
|
|