Kevin Hu
mv service_conf.yaml to conf/ and fix: add 'answer' as a parameter to 'generate' (#3379)
587bed3
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import json | |
import os | |
import sys | |
import time | |
import argparse | |
from collections import defaultdict | |
from api.db import LLMType | |
from api.db.services.llm_service import LLMBundle | |
from api.db.services.knowledgebase_service import KnowledgebaseService | |
from api.settings import retrievaler, docStoreConn | |
from api.utils import get_uuid | |
from rag.nlp import tokenize, search | |
from ranx import evaluate | |
import pandas as pd | |
from tqdm import tqdm | |
global max_docs | |
max_docs = sys.maxsize | |
class Benchmark: | |
def __init__(self, kb_id): | |
self.kb_id = kb_id | |
e, self.kb = KnowledgebaseService.get_by_id(kb_id) | |
self.similarity_threshold = self.kb.similarity_threshold | |
self.vector_similarity_weight = self.kb.vector_similarity_weight | |
self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language) | |
self.tenant_id = '' | |
self.index_name = '' | |
self.initialized_index = False | |
def _get_retrieval(self, qrels): | |
# Need to wait for the ES and Infinity index to be ready | |
time.sleep(20) | |
run = defaultdict(dict) | |
query_list = list(qrels.keys()) | |
for query in query_list: | |
ranks = retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30, | |
0.0, self.vector_similarity_weight) | |
if len(ranks["chunks"]) == 0: | |
print(f"deleted query: {query}") | |
del qrels[query] | |
continue | |
for c in ranks["chunks"]: | |
if "vector" in c: | |
del c["vector"] | |
run[query][c["chunk_id"]] = c["similarity"] | |
return run | |
def embedding(self, docs, batch_size=16): | |
vects = [] | |
cnts = [d["content_with_weight"] for d in docs] | |
for i in range(0, len(cnts), batch_size): | |
vts, c = self.embd_mdl.encode(cnts[i: i + batch_size]) | |
vects.extend(vts.tolist()) | |
assert len(docs) == len(vects) | |
vector_size = 0 | |
for i, d in enumerate(docs): | |
v = vects[i] | |
vector_size = len(v) | |
d["q_%d_vec" % len(v)] = v | |
return docs, vector_size | |
def init_index(self, vector_size: int): | |
if self.initialized_index: | |
return | |
if docStoreConn.indexExist(self.index_name, self.kb_id): | |
docStoreConn.deleteIdx(self.index_name, self.kb_id) | |
docStoreConn.createIdx(self.index_name, self.kb_id, vector_size) | |
self.initialized_index = True | |
def ms_marco_index(self, file_path, index_name): | |
qrels = defaultdict(dict) | |
texts = defaultdict(dict) | |
docs_count = 0 | |
docs = [] | |
filelist = sorted(os.listdir(file_path)) | |
for fn in filelist: | |
if docs_count >= max_docs: | |
break | |
if not fn.endswith(".parquet"): | |
continue | |
data = pd.read_parquet(os.path.join(file_path, fn)) | |
for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn): | |
if docs_count >= max_docs: | |
break | |
query = data.iloc[i]['query'] | |
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']): | |
d = { | |
"id": get_uuid(), | |
"kb_id": self.kb.id, | |
"docnm_kwd": "xxxxx", | |
"doc_id": "ksksks" | |
} | |
tokenize(d, text, "english") | |
docs.append(d) | |
texts[d["id"]] = text | |
qrels[query][d["id"]] = int(rel) | |
if len(docs) >= 32: | |
docs_count += len(docs) | |
docs, vector_size = self.embedding(docs) | |
self.init_index(vector_size) | |
docStoreConn.insert(docs, self.index_name, self.kb_id) | |
docs = [] | |
if docs: | |
docs, vector_size = self.embedding(docs) | |
self.init_index(vector_size) | |
docStoreConn.insert(docs, self.index_name, self.kb_id) | |
return qrels, texts | |
def trivia_qa_index(self, file_path, index_name): | |
qrels = defaultdict(dict) | |
texts = defaultdict(dict) | |
docs_count = 0 | |
docs = [] | |
filelist = sorted(os.listdir(file_path)) | |
for fn in filelist: | |
if docs_count >= max_docs: | |
break | |
if not fn.endswith(".parquet"): | |
continue | |
data = pd.read_parquet(os.path.join(file_path, fn)) | |
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn): | |
if docs_count >= max_docs: | |
break | |
query = data.iloc[i]['question'] | |
for rel, text in zip(data.iloc[i]["search_results"]['rank'], | |
data.iloc[i]["search_results"]['search_context']): | |
d = { | |
"id": get_uuid(), | |
"kb_id": self.kb.id, | |
"docnm_kwd": "xxxxx", | |
"doc_id": "ksksks" | |
} | |
tokenize(d, text, "english") | |
docs.append(d) | |
texts[d["id"]] = text | |
qrels[query][d["id"]] = int(rel) | |
if len(docs) >= 32: | |
docs_count += len(docs) | |
docs, vector_size = self.embedding(docs) | |
self.init_index(vector_size) | |
docStoreConn.insert(docs,self.index_name) | |
docs = [] | |
docs, vector_size = self.embedding(docs) | |
self.init_index(vector_size) | |
docStoreConn.insert(docs, self.index_name) | |
return qrels, texts | |
def miracl_index(self, file_path, corpus_path, index_name): | |
corpus_total = {} | |
for corpus_file in os.listdir(corpus_path): | |
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True) | |
for index, i in tmp_data.iterrows(): | |
corpus_total[i['docid']] = i['text'] | |
topics_total = {} | |
for topics_file in os.listdir(os.path.join(file_path, 'topics')): | |
if 'test' in topics_file: | |
continue | |
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query']) | |
for index, i in tmp_data.iterrows(): | |
topics_total[i['qid']] = i['query'] | |
qrels = defaultdict(dict) | |
texts = defaultdict(dict) | |
docs_count = 0 | |
docs = [] | |
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')): | |
if 'test' in qrels_file: | |
continue | |
if docs_count >= max_docs: | |
break | |
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t', | |
names=['qid', 'Q0', 'docid', 'relevance']) | |
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file): | |
if docs_count >= max_docs: | |
break | |
query = topics_total[tmp_data.iloc[i]['qid']] | |
text = corpus_total[tmp_data.iloc[i]['docid']] | |
rel = tmp_data.iloc[i]['relevance'] | |
d = { | |
"id": get_uuid(), | |
"kb_id": self.kb.id, | |
"docnm_kwd": "xxxxx", | |
"doc_id": "ksksks" | |
} | |
tokenize(d, text, 'english') | |
docs.append(d) | |
texts[d["id"]] = text | |
qrels[query][d["id"]] = int(rel) | |
if len(docs) >= 32: | |
docs_count += len(docs) | |
docs, vector_size = self.embedding(docs) | |
self.init_index(vector_size) | |
docStoreConn.insert(docs, self.index_name) | |
docs = [] | |
docs, vector_size = self.embedding(docs) | |
self.init_index(vector_size) | |
docStoreConn.insert(docs, self.index_name) | |
return qrels, texts | |
def save_results(self, qrels, run, texts, dataset, file_path): | |
keep_result = [] | |
run_keys = list(run.keys()) | |
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"): | |
key = run_keys[run_i] | |
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key], | |
'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")}) | |
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10']) | |
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f: | |
f.write('## Score For Every Query\n') | |
for keep_result_i in keep_result: | |
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n') | |
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()] | |
scores = sorted(scores, key=lambda kk: kk[1]) | |
for score in scores[:10]: | |
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n') | |
json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+"), indent=2) | |
json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+"), indent=2) | |
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!') | |
def __call__(self, dataset, file_path, miracl_corpus=''): | |
if dataset == "ms_marco_v1.1": | |
self.tenant_id = "benchmark_ms_marco_v11" | |
self.index_name = search.index_name(self.tenant_id) | |
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1") | |
run = self._get_retrieval(qrels) | |
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"])) | |
self.save_results(qrels, run, texts, dataset, file_path) | |
if dataset == "trivia_qa": | |
self.tenant_id = "benchmark_trivia_qa" | |
self.index_name = search.index_name(self.tenant_id) | |
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa") | |
run = self._get_retrieval(qrels) | |
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"])) | |
self.save_results(qrels, run, texts, dataset, file_path) | |
if dataset == "miracl": | |
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', | |
'yo', 'zh']: | |
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)): | |
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!') | |
continue | |
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')): | |
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!') | |
continue | |
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')): | |
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!') | |
continue | |
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)): | |
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!') | |
continue | |
self.tenant_id = "benchmark_miracl_" + lang | |
self.index_name = search.index_name(self.tenant_id) | |
self.initialized_index = False | |
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang), | |
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang), | |
"benchmark_miracl_" + lang) | |
run = self._get_retrieval(qrels) | |
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"])) | |
self.save_results(qrels, run, texts, dataset, file_path) | |
if __name__ == '__main__': | |
print('*****************RAGFlow Benchmark*****************') | |
parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark') | |
parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate') | |
parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id') | |
parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl') | |
parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path') | |
parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl') | |
args = parser.parse_args() | |
max_docs = args.max_docs | |
kb_id = args.kb_id | |
ex = Benchmark(kb_id) | |
dataset = args.dataset | |
dataset_path = args.dataset_path | |
if dataset == "ms_marco_v1.1" or dataset == "trivia_qa": | |
ex(dataset, dataset_path) | |
elif dataset == "miracl": | |
if len(args) < 5: | |
print('Please input the correct parameters!') | |
exit(1) | |
miracl_corpus_path = args[4] | |
ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path) | |
else: | |
print("Dataset: ", dataset, "not supported!") | |