0000sir
Fix keys of Xinference deployed models, especially has the same model name with public hosted models. (#2832)
13b2570
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import re | |
import threading | |
from urllib.parse import urljoin | |
import requests | |
from huggingface_hub import snapshot_download | |
import os | |
from abc import ABC | |
import numpy as np | |
from api.settings import LIGHTEN | |
from api.utils.file_utils import get_home_cache_dir | |
from rag.utils import num_tokens_from_string, truncate | |
import json | |
def sigmoid(x): | |
return 1 / (1 + np.exp(-x)) | |
class Base(ABC): | |
def __init__(self, key, model_name): | |
pass | |
def similarity(self, query: str, texts: list): | |
raise NotImplementedError("Please implement encode method!") | |
class DefaultRerank(Base): | |
_model = None | |
_model_lock = threading.Lock() | |
def __init__(self, key, model_name, **kwargs): | |
""" | |
If you have trouble downloading HuggingFace models, -_^ this might help!! | |
For Linux: | |
export HF_ENDPOINT=https://hf-mirror.com | |
For Windows: | |
Good luck | |
^_- | |
""" | |
if not LIGHTEN and not DefaultRerank._model: | |
import torch | |
from FlagEmbedding import FlagReranker | |
with DefaultRerank._model_lock: | |
if not DefaultRerank._model: | |
try: | |
DefaultRerank._model = FlagReranker( | |
os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), | |
use_fp16=torch.cuda.is_available()) | |
except Exception as e: | |
model_dir = snapshot_download(repo_id=model_name, | |
local_dir=os.path.join(get_home_cache_dir(), | |
re.sub(r"^[a-zA-Z]+/", "", model_name)), | |
local_dir_use_symlinks=False) | |
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available()) | |
self._model = DefaultRerank._model | |
def similarity(self, query: str, texts: list): | |
pairs = [(query, truncate(t, 2048)) for t in texts] | |
token_count = 0 | |
for _, t in pairs: | |
token_count += num_tokens_from_string(t) | |
batch_size = 4096 | |
res = [] | |
for i in range(0, len(pairs), batch_size): | |
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048) | |
scores = sigmoid(np.array(scores)).tolist() | |
if isinstance(scores, float): | |
res.append(scores) | |
else: | |
res.extend(scores) | |
return np.array(res), token_count | |
class JinaRerank(Base): | |
def __init__(self, key, model_name="jina-reranker-v1-base-en", | |
base_url="https://api.jina.ai/v1/rerank"): | |
self.base_url = "https://api.jina.ai/v1/rerank" | |
self.headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {key}" | |
} | |
self.model_name = model_name | |
def similarity(self, query: str, texts: list): | |
texts = [truncate(t, 8196) for t in texts] | |
data = { | |
"model": self.model_name, | |
"query": query, | |
"documents": texts, | |
"top_n": len(texts) | |
} | |
res = requests.post(self.base_url, headers=self.headers, json=data).json() | |
rank = np.zeros(len(texts), dtype=float) | |
for d in res["results"]: | |
rank[d["index"]] = d["relevance_score"] | |
return rank, res["usage"]["total_tokens"] | |
class YoudaoRerank(DefaultRerank): | |
_model = None | |
_model_lock = threading.Lock() | |
def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs): | |
if not LIGHTEN and not YoudaoRerank._model: | |
from BCEmbedding import RerankerModel | |
with YoudaoRerank._model_lock: | |
if not YoudaoRerank._model: | |
try: | |
print("LOADING BCE...") | |
YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join( | |
get_home_cache_dir(), | |
re.sub(r"^[a-zA-Z]+/", "", model_name))) | |
except Exception as e: | |
YoudaoRerank._model = RerankerModel( | |
model_name_or_path=model_name.replace( | |
"maidalun1020", "InfiniFlow")) | |
self._model = YoudaoRerank._model | |
def similarity(self, query: str, texts: list): | |
pairs = [(query, truncate(t, self._model.max_length)) for t in texts] | |
token_count = 0 | |
for _, t in pairs: | |
token_count += num_tokens_from_string(t) | |
batch_size = 8 | |
res = [] | |
for i in range(0, len(pairs), batch_size): | |
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length) | |
scores = sigmoid(np.array(scores)).tolist() | |
if isinstance(scores, float): | |
res.append(scores) | |
else: | |
res.extend(scores) | |
return np.array(res), token_count | |
class XInferenceRerank(Base): | |
def __init__(self, key="xxxxxxx", model_name="", base_url=""): | |
if base_url.find("/v1") == -1: | |
base_url = urljoin(base_url, "/v1/rerank") | |
self.model_name = model_name | |
self.base_url = base_url | |
self.headers = { | |
"Content-Type": "application/json", | |
"accept": "application/json", | |
"Authorization": f"Bearer {key}" | |
} | |
def similarity(self, query: str, texts: list): | |
if len(texts) == 0: | |
return np.array([]), 0 | |
data = { | |
"model": self.model_name, | |
"query": query, | |
"return_documents": "true", | |
"return_len": "true", | |
"documents": texts | |
} | |
res = requests.post(self.base_url, headers=self.headers, json=data).json() | |
rank = np.zeros(len(texts), dtype=float) | |
for d in res["results"]: | |
rank[d["index"]] = d["relevance_score"] | |
return rank, res["meta"]["tokens"]["input_tokens"] + res["meta"]["tokens"]["output_tokens"] | |
class LocalAIRerank(Base): | |
def __init__(self, key, model_name, base_url): | |
pass | |
def similarity(self, query: str, texts: list): | |
raise NotImplementedError("The LocalAIRerank has not been implement") | |
class NvidiaRerank(Base): | |
def __init__( | |
self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/" | |
): | |
if not base_url: | |
base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/" | |
self.model_name = model_name | |
if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3": | |
self.base_url = os.path.join( | |
base_url, "nv-rerankqa-mistral-4b-v3", "reranking" | |
) | |
if self.model_name == "nvidia/rerank-qa-mistral-4b": | |
self.base_url = os.path.join(base_url, "reranking") | |
self.model_name = "nv-rerank-qa-mistral-4b:1" | |
self.headers = { | |
"accept": "application/json", | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {key}", | |
} | |
def similarity(self, query: str, texts: list): | |
token_count = num_tokens_from_string(query) + sum( | |
[num_tokens_from_string(t) for t in texts] | |
) | |
data = { | |
"model": self.model_name, | |
"query": {"text": query}, | |
"passages": [{"text": text} for text in texts], | |
"truncate": "END", | |
"top_n": len(texts), | |
} | |
res = requests.post(self.base_url, headers=self.headers, json=data).json() | |
rank = np.zeros(len(texts), dtype=float) | |
for d in res["rankings"]: | |
rank[d["index"]] = d["logit"] | |
return rank, token_count | |
class LmStudioRerank(Base): | |
def __init__(self, key, model_name, base_url): | |
pass | |
def similarity(self, query: str, texts: list): | |
raise NotImplementedError("The LmStudioRerank has not been implement") | |
class OpenAI_APIRerank(Base): | |
def __init__(self, key, model_name, base_url): | |
pass | |
def similarity(self, query: str, texts: list): | |
raise NotImplementedError("The api has not been implement") | |
class CoHereRerank(Base): | |
def __init__(self, key, model_name, base_url=None): | |
from cohere import Client | |
self.client = Client(api_key=key) | |
self.model_name = model_name | |
def similarity(self, query: str, texts: list): | |
token_count = num_tokens_from_string(query) + sum( | |
[num_tokens_from_string(t) for t in texts] | |
) | |
res = self.client.rerank( | |
model=self.model_name, | |
query=query, | |
documents=texts, | |
top_n=len(texts), | |
return_documents=False, | |
) | |
rank = np.zeros(len(texts), dtype=float) | |
for d in res.results: | |
rank[d.index] = d.relevance_score | |
return rank, token_count | |
class TogetherAIRerank(Base): | |
def __init__(self, key, model_name, base_url): | |
pass | |
def similarity(self, query: str, texts: list): | |
raise NotImplementedError("The api has not been implement") | |
class SILICONFLOWRerank(Base): | |
def __init__( | |
self, key, model_name, base_url="https://api.siliconflow.cn/v1/rerank" | |
): | |
if not base_url: | |
base_url = "https://api.siliconflow.cn/v1/rerank" | |
self.model_name = model_name | |
self.base_url = base_url | |
self.headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"authorization": f"Bearer {key}", | |
} | |
def similarity(self, query: str, texts: list): | |
payload = { | |
"model": self.model_name, | |
"query": query, | |
"documents": texts, | |
"top_n": len(texts), | |
"return_documents": False, | |
"max_chunks_per_doc": 1024, | |
"overlap_tokens": 80, | |
} | |
response = requests.post( | |
self.base_url, json=payload, headers=self.headers | |
).json() | |
rank = np.zeros(len(texts), dtype=float) | |
for d in response["results"]: | |
rank[d["index"]] = d["relevance_score"] | |
return ( | |
rank, | |
response["meta"]["tokens"]["input_tokens"] + response["meta"]["tokens"]["output_tokens"], | |
) | |
class BaiduYiyanRerank(Base): | |
def __init__(self, key, model_name, base_url=None): | |
from qianfan.resources import Reranker | |
key = json.loads(key) | |
ak = key.get("yiyan_ak", "") | |
sk = key.get("yiyan_sk", "") | |
self.client = Reranker(ak=ak, sk=sk) | |
self.model_name = model_name | |
def similarity(self, query: str, texts: list): | |
res = self.client.do( | |
model=self.model_name, | |
query=query, | |
documents=texts, | |
top_n=len(texts), | |
).body | |
rank = np.zeros(len(texts), dtype=float) | |
for d in res["results"]: | |
rank[d["index"]] = d["relevance_score"] | |
return rank, res["usage"]["total_tokens"] | |
class VoyageRerank(Base): | |
def __init__(self, key, model_name, base_url=None): | |
import voyageai | |
self.client = voyageai.Client(api_key=key) | |
self.model_name = model_name | |
def similarity(self, query: str, texts: list): | |
res = self.client.rerank( | |
query=query, documents=texts, model=self.model_name, top_k=len(texts) | |
) | |
rank = np.zeros(len(texts), dtype=float) | |
for r in res.results: | |
rank[r.index] = r.relevance_score | |
return rank, res.total_tokens | |