|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
from abc import ABC |
|
from api.db import LLMType |
|
from api.db.services.llm_service import LLMBundle |
|
from agent.component import GenerateParam, Generate |
|
from agent.settings import DEBUG |
|
|
|
|
|
class KeywordExtractParam(GenerateParam): |
|
""" |
|
Define the KeywordExtract component parameters. |
|
""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.top_n = 1 |
|
|
|
def check(self): |
|
super().check() |
|
self.check_positive_integer(self.top_n, "Top N") |
|
|
|
def get_prompt(self): |
|
self.prompt = """ |
|
- Role: You're a question analyzer. |
|
- Requirements: |
|
- Summarize user's question, and give top %s important keyword/phrase. |
|
- Use comma as a delimiter to separate keywords/phrases. |
|
- Answer format: (in language of user's question) |
|
- keyword: |
|
""" % self.top_n |
|
return self.prompt |
|
|
|
|
|
class KeywordExtract(Generate, ABC): |
|
component_name = "KeywordExtract" |
|
|
|
def _run(self, history, **kwargs): |
|
q = "" |
|
for r, c in self._canvas.history[::-1]: |
|
if r == "user": |
|
q += c |
|
break |
|
|
|
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id) |
|
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}], |
|
self._param.gen_conf()) |
|
|
|
ans = re.sub(r".*keyword:", "", ans).strip() |
|
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::") |
|
return KeywordExtract.be_output(ans) |
|
|