|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
import re
|
|
from io import BytesIO
|
|
from xpinyin import Pinyin
|
|
import numpy as np
|
|
import pandas as pd
|
|
from openpyxl import load_workbook
|
|
from dateutil.parser import parse as datetime_parse
|
|
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from rag.nlp import rag_tokenizer, is_english, tokenize, find_codec
|
|
from deepdoc.parser import ExcelParser
|
|
|
|
|
|
class Excel(ExcelParser):
|
|
def __call__(self, fnm, binary=None, from_page=0,
|
|
to_page=10000000000, callback=None):
|
|
if not binary:
|
|
wb = load_workbook(fnm)
|
|
else:
|
|
wb = load_workbook(BytesIO(binary))
|
|
total = 0
|
|
for sheetname in wb.sheetnames:
|
|
total += len(list(wb[sheetname].rows))
|
|
|
|
res, fails, done = [], [], 0
|
|
rn = 0
|
|
for sheetname in wb.sheetnames:
|
|
ws = wb[sheetname]
|
|
rows = list(ws.rows)
|
|
if not rows:continue
|
|
headers = [cell.value for cell in rows[0]]
|
|
missed = set([i for i, h in enumerate(headers) if h is None])
|
|
headers = [
|
|
cell.value for i,
|
|
cell in enumerate(
|
|
rows[0]) if i not in missed]
|
|
if not headers:continue
|
|
data = []
|
|
for i, r in enumerate(rows[1:]):
|
|
rn += 1
|
|
if rn - 1 < from_page:
|
|
continue
|
|
if rn - 1 >= to_page:
|
|
break
|
|
row = [
|
|
cell.value for ii,
|
|
cell in enumerate(r) if ii not in missed]
|
|
if len(row) != len(headers):
|
|
fails.append(str(i))
|
|
continue
|
|
data.append(row)
|
|
done += 1
|
|
res.append(pd.DataFrame(np.array(data), columns=headers))
|
|
|
|
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
return res
|
|
|
|
|
|
def trans_datatime(s):
|
|
try:
|
|
return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S")
|
|
except Exception as e:
|
|
pass
|
|
|
|
|
|
def trans_bool(s):
|
|
if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$",
|
|
str(s).strip(), flags=re.IGNORECASE):
|
|
return "yes"
|
|
if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE):
|
|
return "no"
|
|
|
|
|
|
def column_data_type(arr):
|
|
arr = list(arr)
|
|
uni = len(set([a for a in arr if a is not None]))
|
|
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
|
|
trans = {t: f for f, t in
|
|
[(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
|
|
for a in arr:
|
|
if a is None:
|
|
continue
|
|
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
|
|
counts["int"] += 1
|
|
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
|
|
counts["float"] += 1
|
|
elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE):
|
|
counts["bool"] += 1
|
|
elif trans_datatime(str(a)):
|
|
counts["datetime"] += 1
|
|
else:
|
|
counts["text"] += 1
|
|
counts = sorted(counts.items(), key=lambda x: x[1] * -1)
|
|
ty = counts[0][0]
|
|
for i in range(len(arr)):
|
|
if arr[i] is None:
|
|
continue
|
|
try:
|
|
arr[i] = trans[ty](str(arr[i]))
|
|
except Exception as e:
|
|
arr[i] = None
|
|
|
|
|
|
|
|
return arr, ty
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=10000000000,
|
|
lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Excel and csv(txt) format files are supported.
|
|
For csv or txt file, the delimiter between columns is TAB.
|
|
The first line must be column headers.
|
|
Column headers must be meaningful terms inorder to make our NLP model understanding.
|
|
It's good to enumerate some synonyms using slash '/' to separate, and even better to
|
|
enumerate values using brackets like 'gender/sex(male, female)'.
|
|
Here are some examples for headers:
|
|
1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL)
|
|
2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)
|
|
|
|
Every row in table will be treated as a chunk.
|
|
"""
|
|
|
|
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
excel_parser = Excel()
|
|
dfs = excel_parser(
|
|
filename,
|
|
binary,
|
|
from_page=from_page,
|
|
to_page=to_page,
|
|
callback=callback)
|
|
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:
|
|
break
|
|
txt += l
|
|
lines = txt.split("\n")
|
|
fails = []
|
|
headers = lines[0].split(kwargs.get("delimiter", "\t"))
|
|
rows = []
|
|
for i, line in enumerate(lines[1:]):
|
|
if i < from_page:
|
|
continue
|
|
if i >= to_page:
|
|
break
|
|
row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
|
|
if len(row) != len(headers):
|
|
fails.append(str(i))
|
|
continue
|
|
rows.append(row)
|
|
|
|
callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
|
|
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
"file type not supported yet(excel, text, csv supported)")
|
|
|
|
res = []
|
|
PY = Pinyin()
|
|
fieds_map = {
|
|
"text": "_tks",
|
|
"int": "_long",
|
|
"keyword": "_kwd",
|
|
"float": "_flt",
|
|
"datetime": "_dt",
|
|
"bool": "_kwd"}
|
|
for df in dfs:
|
|
for n in ["id", "_id", "index", "idx"]:
|
|
if n in df.columns:
|
|
del df[n]
|
|
clmns = df.columns.values
|
|
txts = list(copy.deepcopy(clmns))
|
|
py_clmns = [
|
|
PY.get_pinyins(
|
|
re.sub(
|
|
r"(/.*|([^()]+?)|\([^()]+?\))",
|
|
"",
|
|
str(n)),
|
|
'_')[0] for n in clmns]
|
|
clmn_tys = []
|
|
for j in range(len(clmns)):
|
|
cln, ty = column_data_type(df[clmns[j]])
|
|
clmn_tys.append(ty)
|
|
df[clmns[j]] = cln
|
|
if ty == "text":
|
|
txts.extend([str(c) for c in cln if c])
|
|
clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " "))
|
|
for i in range(len(clmns))]
|
|
|
|
eng = lang.lower() == "english"
|
|
for ii, row in df.iterrows():
|
|
d = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
row_txt = []
|
|
for j in range(len(clmns)):
|
|
if row[clmns[j]] is None:
|
|
continue
|
|
if not str(row[clmns[j]]):
|
|
continue
|
|
if pd.isna(row[clmns[j]]):
|
|
continue
|
|
fld = clmns_map[j][0]
|
|
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize(
|
|
row[clmns[j]])
|
|
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
|
|
if not row_txt:
|
|
continue
|
|
tokenize(d, "; ".join(row_txt), eng)
|
|
res.append(d)
|
|
|
|
KnowledgebaseService.update_parser_config(
|
|
kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
|
|
callback(0.35, "")
|
|
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
|
|
chunk(sys.argv[1], callback=dummy)
|
|
|