|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
import threading |
|
from urllib.parse import urljoin |
|
|
|
import requests |
|
from huggingface_hub import snapshot_download |
|
import os |
|
from abc import ABC |
|
import numpy as np |
|
|
|
from api import settings |
|
from api.utils.file_utils import get_home_cache_dir |
|
from rag.utils import num_tokens_from_string, truncate |
|
import json |
|
|
|
|
|
def sigmoid(x): |
|
return 1 / (1 + np.exp(-x)) |
|
|
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
def similarity(self, query: str, texts: list): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
|
|
class DefaultRerank(Base): |
|
_model = None |
|
_model_lock = threading.Lock() |
|
|
|
def __init__(self, key, model_name, **kwargs): |
|
""" |
|
If you have trouble downloading HuggingFace models, -_^ this might help!! |
|
|
|
For Linux: |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
|
For Windows: |
|
Good luck |
|
^_- |
|
|
|
""" |
|
if not settings.LIGHTEN and not DefaultRerank._model: |
|
import torch |
|
from FlagEmbedding import FlagReranker |
|
with DefaultRerank._model_lock: |
|
if not DefaultRerank._model: |
|
try: |
|
DefaultRerank._model = FlagReranker( |
|
os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), |
|
use_fp16=torch.cuda.is_available()) |
|
except Exception: |
|
model_dir = snapshot_download(repo_id=model_name, |
|
local_dir=os.path.join(get_home_cache_dir(), |
|
re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), |
|
local_dir_use_symlinks=False) |
|
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available()) |
|
self._model = DefaultRerank._model |
|
|
|
def similarity(self, query: str, texts: list): |
|
pairs = [(query, truncate(t, 2048)) for t in texts] |
|
token_count = 0 |
|
for _, t in pairs: |
|
token_count += num_tokens_from_string(t) |
|
batch_size = 4096 |
|
res = [] |
|
for i in range(0, len(pairs), batch_size): |
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048) |
|
scores = sigmoid(np.array(scores)).tolist() |
|
if isinstance(scores, float): |
|
res.append(scores) |
|
else: |
|
res.extend(scores) |
|
return np.array(res), token_count |
|
|
|
|
|
class JinaRerank(Base): |
|
def __init__(self, key, model_name="jina-reranker-v2-base-multilingual", |
|
base_url="https://api.jina.ai/v1/rerank"): |
|
self.base_url = "https://api.jina.ai/v1/rerank" |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}" |
|
} |
|
self.model_name = model_name |
|
|
|
def similarity(self, query: str, texts: list): |
|
texts = [truncate(t, 8196) for t in texts] |
|
data = { |
|
"model": self.model_name, |
|
"query": query, |
|
"documents": texts, |
|
"top_n": len(texts) |
|
} |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
rank = np.zeros(len(texts), dtype=float) |
|
for d in res["results"]: |
|
rank[d["index"]] = d["relevance_score"] |
|
return rank, res["usage"]["total_tokens"] |
|
|
|
|
|
class YoudaoRerank(DefaultRerank): |
|
_model = None |
|
_model_lock = threading.Lock() |
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs): |
|
if not settings.LIGHTEN and not YoudaoRerank._model: |
|
from BCEmbedding import RerankerModel |
|
with YoudaoRerank._model_lock: |
|
if not YoudaoRerank._model: |
|
try: |
|
YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join( |
|
get_home_cache_dir(), |
|
re.sub(r"^[a-zA-Z0-9]+/", "", model_name))) |
|
except Exception: |
|
YoudaoRerank._model = RerankerModel( |
|
model_name_or_path=model_name.replace( |
|
"maidalun1020", "InfiniFlow")) |
|
|
|
self._model = YoudaoRerank._model |
|
|
|
def similarity(self, query: str, texts: list): |
|
pairs = [(query, truncate(t, self._model.max_length)) for t in texts] |
|
token_count = 0 |
|
for _, t in pairs: |
|
token_count += num_tokens_from_string(t) |
|
batch_size = 8 |
|
res = [] |
|
for i in range(0, len(pairs), batch_size): |
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length) |
|
scores = sigmoid(np.array(scores)).tolist() |
|
if isinstance(scores, float): |
|
res.append(scores) |
|
else: |
|
res.extend(scores) |
|
return np.array(res), token_count |
|
|
|
|
|
class XInferenceRerank(Base): |
|
def __init__(self, key="xxxxxxx", model_name="", base_url=""): |
|
if base_url.find("/v1") == -1: |
|
base_url = urljoin(base_url, "/v1/rerank") |
|
if base_url.find("/rerank") == -1: |
|
base_url = urljoin(base_url, "/v1/rerank") |
|
self.model_name = model_name |
|
self.base_url = base_url |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"accept": "application/json", |
|
"Authorization": f"Bearer {key}" |
|
} |
|
|
|
def similarity(self, query: str, texts: list): |
|
if len(texts) == 0: |
|
return np.array([]), 0 |
|
data = { |
|
"model": self.model_name, |
|
"query": query, |
|
"return_documents": "true", |
|
"return_len": "true", |
|
"documents": texts |
|
} |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
rank = np.zeros(len(texts), dtype=float) |
|
for d in res["results"]: |
|
rank[d["index"]] = d["relevance_score"] |
|
return rank, res["meta"]["tokens"]["input_tokens"] + res["meta"]["tokens"]["output_tokens"] |
|
|
|
|
|
class LocalAIRerank(Base): |
|
def __init__(self, key, model_name, base_url): |
|
if base_url.find("/rerank") == -1: |
|
self.base_url = urljoin(base_url, "/rerank") |
|
else: |
|
self.base_url = base_url |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}" |
|
} |
|
self.model_name = model_name.split("___")[0] |
|
|
|
def similarity(self, query: str, texts: list): |
|
|
|
texts = [truncate(t, 500) for t in texts] |
|
data = { |
|
"model": self.model_name, |
|
"query": query, |
|
"documents": texts, |
|
"top_n": len(texts), |
|
} |
|
token_count = 0 |
|
for t in texts: |
|
token_count += num_tokens_from_string(t) |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
rank = np.zeros(len(texts), dtype=float) |
|
if 'results' not in res: |
|
raise ValueError("response not contains results\n" + str(res)) |
|
for d in res["results"]: |
|
rank[d["index"]] = d["relevance_score"] |
|
|
|
|
|
min_rank = np.min(rank) |
|
max_rank = np.max(rank) |
|
|
|
|
|
if max_rank - min_rank != 0: |
|
rank = (rank - min_rank) / (max_rank - min_rank) |
|
else: |
|
rank = np.zeros_like(rank) |
|
|
|
return rank, token_count |
|
|
|
class NvidiaRerank(Base): |
|
def __init__( |
|
self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/" |
|
): |
|
if not base_url: |
|
base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/" |
|
self.model_name = model_name |
|
|
|
if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3": |
|
self.base_url = os.path.join( |
|
base_url, "nv-rerankqa-mistral-4b-v3", "reranking" |
|
) |
|
|
|
if self.model_name == "nvidia/rerank-qa-mistral-4b": |
|
self.base_url = os.path.join(base_url, "reranking") |
|
self.model_name = "nv-rerank-qa-mistral-4b:1" |
|
|
|
self.headers = { |
|
"accept": "application/json", |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}", |
|
} |
|
|
|
def similarity(self, query: str, texts: list): |
|
token_count = num_tokens_from_string(query) + sum( |
|
[num_tokens_from_string(t) for t in texts] |
|
) |
|
data = { |
|
"model": self.model_name, |
|
"query": {"text": query}, |
|
"passages": [{"text": text} for text in texts], |
|
"truncate": "END", |
|
"top_n": len(texts), |
|
} |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
rank = np.zeros(len(texts), dtype=float) |
|
for d in res["rankings"]: |
|
rank[d["index"]] = d["logit"] |
|
return rank, token_count |
|
|
|
|
|
class LmStudioRerank(Base): |
|
def __init__(self, key, model_name, base_url): |
|
pass |
|
|
|
def similarity(self, query: str, texts: list): |
|
raise NotImplementedError("The LmStudioRerank has not been implement") |
|
|
|
|
|
class OpenAI_APIRerank(Base): |
|
def __init__(self, key, model_name, base_url): |
|
if base_url.find("/rerank") == -1: |
|
self.base_url = urljoin(base_url, "/rerank") |
|
else: |
|
self.base_url = base_url |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}" |
|
} |
|
self.model_name = model_name.split("___")[0] |
|
|
|
def similarity(self, query: str, texts: list): |
|
|
|
texts = [truncate(t, 500) for t in texts] |
|
data = { |
|
"model": self.model_name, |
|
"query": query, |
|
"documents": texts, |
|
"top_n": len(texts), |
|
} |
|
token_count = 0 |
|
for t in texts: |
|
token_count += num_tokens_from_string(t) |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
rank = np.zeros(len(texts), dtype=float) |
|
if 'results' not in res: |
|
raise ValueError("response not contains results\n" + str(res)) |
|
for d in res["results"]: |
|
rank[d["index"]] = d["relevance_score"] |
|
|
|
|
|
min_rank = np.min(rank) |
|
max_rank = np.max(rank) |
|
|
|
|
|
if max_rank - min_rank != 0: |
|
rank = (rank - min_rank) / (max_rank - min_rank) |
|
else: |
|
rank = np.zeros_like(rank) |
|
|
|
return rank, token_count |
|
|
|
|
|
class CoHereRerank(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
from cohere import Client |
|
|
|
self.client = Client(api_key=key) |
|
self.model_name = model_name |
|
|
|
def similarity(self, query: str, texts: list): |
|
token_count = num_tokens_from_string(query) + sum( |
|
[num_tokens_from_string(t) for t in texts] |
|
) |
|
res = self.client.rerank( |
|
model=self.model_name, |
|
query=query, |
|
documents=texts, |
|
top_n=len(texts), |
|
return_documents=False, |
|
) |
|
rank = np.zeros(len(texts), dtype=float) |
|
for d in res.results: |
|
rank[d.index] = d.relevance_score |
|
return rank, token_count |
|
|
|
|
|
class TogetherAIRerank(Base): |
|
def __init__(self, key, model_name, base_url): |
|
pass |
|
|
|
def similarity(self, query: str, texts: list): |
|
raise NotImplementedError("The api has not been implement") |
|
|
|
|
|
class SILICONFLOWRerank(Base): |
|
def __init__( |
|
self, key, model_name, base_url="https://api.siliconflow.cn/v1/rerank" |
|
): |
|
if not base_url: |
|
base_url = "https://api.siliconflow.cn/v1/rerank" |
|
self.model_name = model_name |
|
self.base_url = base_url |
|
self.headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"authorization": f"Bearer {key}", |
|
} |
|
|
|
def similarity(self, query: str, texts: list): |
|
payload = { |
|
"model": self.model_name, |
|
"query": query, |
|
"documents": texts, |
|
"top_n": len(texts), |
|
"return_documents": False, |
|
"max_chunks_per_doc": 1024, |
|
"overlap_tokens": 80, |
|
} |
|
response = requests.post( |
|
self.base_url, json=payload, headers=self.headers |
|
).json() |
|
rank = np.zeros(len(texts), dtype=float) |
|
if "results" not in response: |
|
return rank, 0 |
|
|
|
for d in response["results"]: |
|
rank[d["index"]] = d["relevance_score"] |
|
return ( |
|
rank, |
|
response["meta"]["tokens"]["input_tokens"] + response["meta"]["tokens"]["output_tokens"], |
|
) |
|
|
|
|
|
class BaiduYiyanRerank(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
from qianfan.resources import Reranker |
|
|
|
key = json.loads(key) |
|
ak = key.get("yiyan_ak", "") |
|
sk = key.get("yiyan_sk", "") |
|
self.client = Reranker(ak=ak, sk=sk) |
|
self.model_name = model_name |
|
|
|
def similarity(self, query: str, texts: list): |
|
res = self.client.do( |
|
model=self.model_name, |
|
query=query, |
|
documents=texts, |
|
top_n=len(texts), |
|
).body |
|
rank = np.zeros(len(texts), dtype=float) |
|
for d in res["results"]: |
|
rank[d["index"]] = d["relevance_score"] |
|
return rank, res["usage"]["total_tokens"] |
|
|
|
|
|
class VoyageRerank(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
import voyageai |
|
|
|
self.client = voyageai.Client(api_key=key) |
|
self.model_name = model_name |
|
|
|
def similarity(self, query: str, texts: list): |
|
res = self.client.rerank( |
|
query=query, documents=texts, model=self.model_name, top_k=len(texts) |
|
) |
|
rank = np.zeros(len(texts), dtype=float) |
|
for r in res.results: |
|
rank[r.index] = r.relevance_score |
|
return rank, res.total_tokens |
|
|
|
|
|
class QWenRerank(Base): |
|
def __init__(self, key, model_name='gte-rerank', base_url=None, **kwargs): |
|
import dashscope |
|
self.api_key = key |
|
self.model_name = dashscope.TextReRank.Models.gte_rerank if model_name is None else model_name |
|
|
|
def similarity(self, query: str, texts: list): |
|
import dashscope |
|
from http import HTTPStatus |
|
resp = dashscope.TextReRank.call( |
|
api_key=self.api_key, |
|
model=self.model_name, |
|
query=query, |
|
documents=texts, |
|
top_n=len(texts), |
|
return_documents=False |
|
) |
|
rank = np.zeros(len(texts), dtype=float) |
|
if resp.status_code == HTTPStatus.OK: |
|
for r in resp.output.results: |
|
rank[r.index] = r.relevance_score |
|
return rank, resp.usage.total_tokens |
|
else: |
|
raise ValueError(f"Error calling QWenRerank model {self.model_name}: {resp.status_code} - {resp.text}") |
|
|