ragflow / rag /llm /chat_model.py
zhichyu's picture
Fix errors detected by Ruff (#3918)
0404a52
raw
history blame
57 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
from dashscope import Generation
from abc import ABC
from openai import OpenAI
import openai
from ollama import Client
from rag.nlp import is_chinese, is_english
from rag.utils import num_tokens_from_string
from groq import Groq
import os
import json
import requests
import asyncio
LENGTH_NOTIFICATION_CN = "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
LENGTH_NOTIFICATION_EN = "...\nFor the content length reason, it stopped, continue?"
class Base(ABC):
def __init__(self, key, model_name, base_url):
timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600))
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf)
for resp in response:
if not resp.choices:
continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content
if not hasattr(resp, "usage") or not resp.usage:
total_tokens = (
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
elif isinstance(resp.usage, dict):
total_tokens = resp.usage.get("total_tokens", total_tokens)
else:
total_tokens = resp.usage.total_tokens
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class GptTurbo(Base):
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
if not base_url:
base_url = "https://api.openai.com/v1"
super().__init__(key, model_name, base_url)
class MoonshotChat(Base):
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
if not base_url:
base_url = "https://api.moonshot.cn/v1"
super().__init__(key, model_name, base_url)
class XinferenceChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
super().__init__(key, model_name, base_url)
class HuggingFaceChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
super().__init__(key, model_name.split("___")[0], base_url)
class DeepSeekChat(Base):
def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
if not base_url:
base_url = "https://api.deepseek.com/v1"
super().__init__(key, model_name, base_url)
class AzureChat(Base):
def __init__(self, key, model_name, **kwargs):
api_key = json.loads(key).get('api_key', '')
api_version = json.loads(key).get('api_version', '2024-02-01')
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
self.model_name = model_name
class BaiChuanChat(Base):
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
if not base_url:
base_url = "https://api.baichuan-ai.com/v1"
super().__init__(key, model_name, base_url)
@staticmethod
def _format_params(params):
return {
"temperature": params.get("temperature", 0.3),
"max_tokens": params.get("max_tokens", 2048),
"top_p": params.get("top_p", 0.85),
}
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={
"tools": [{
"type": "web_search",
"web_search": {
"enable": True,
"search_mode": "performance_first"
}
}]
},
**self._format_params(gen_conf))
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={
"tools": [{
"type": "web_search",
"web_search": {
"enable": True,
"search_mode": "performance_first"
}
}]
},
stream=True,
**self._format_params(gen_conf))
for resp in response:
if not resp.choices:
continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content
total_tokens = (
(
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
if not hasattr(resp, "usage")
else resp.usage["total_tokens"]
)
if resp.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class QWenChat(Base):
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
import dashscope
dashscope.api_key = key
self.model_name = model_name
def chat(self, system, history, gen_conf):
stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true'
if not stream_flag:
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
**gen_conf
)
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content']
tk_count += response.usage.total_tokens
if response.output.choices[0].get("finish_reason", "") == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, tk_count
return "**ERROR**: " + response.message, tk_count
else:
g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
result_list = list(g)
error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
if len(error_msg_list) > 0:
return "**ERROR**: " + "".join(error_msg_list) , 0
else:
return "".join(result_list[:-1]), result_list[-1]
def _chat_streamly(self, system, history, gen_conf, incremental_output=False):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
tk_count = 0
try:
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
stream=True,
incremental_output=incremental_output,
**gen_conf
)
for resp in response:
if resp.status_code == HTTPStatus.OK:
ans = resp.output.choices[0]['message']['content']
tk_count = resp.usage.total_tokens
if resp.output.choices[0].get("finish_reason", "") == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
else:
yield ans + "\n**ERROR**: " + resp.message if not re.search(r" (key|quota)", str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**"
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
def chat_streamly(self, system, history, gen_conf):
return self._chat_streamly(system, history, gen_conf)
class ZhipuChat(Base):
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf
)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
ans = ""
tk_count = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf
)
for resp in response:
if not resp.choices[0].delta.content:
continue
delta = resp.choices[0].delta.content
ans += delta
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
tk_count = resp.usage.total_tokens
if resp.choices[0].finish_reason == "stop":
tk_count = resp.usage.total_tokens
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class OllamaChat(Base):
def __init__(self, key, model_name, **kwargs):
self.client = Client(host=kwargs["base_url"])
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
options = {}
if "temperature" in gen_conf:
options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf:
options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf:
options["top_p"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf:
options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
options["frequency_penalty"] = gen_conf["frequency_penalty"]
response = self.client.chat(
model=self.model_name,
messages=history,
options=options,
keep_alive=-1
)
ans = response["message"]["content"].strip()
return ans, response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
options = {}
if "temperature" in gen_conf:
options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf:
options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf:
options["top_p"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf:
options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
options["frequency_penalty"] = gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.chat(
model=self.model_name,
messages=history,
stream=True,
options=options,
keep_alive=-1
)
for resp in response:
if resp["done"]:
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
ans += resp["message"]["content"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
class LocalAIChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
class LocalLLM(Base):
class RPCProxy:
def __init__(self, host, port):
self.host = host
self.port = int(port)
self.__conn()
def __conn(self):
from multiprocessing.connection import Client
self._connection = Client(
(self.host, self.port), authkey=b"infiniflow-token4kevinhu"
)
def __getattr__(self, name):
import pickle
def do_rpc(*args, **kwargs):
for _ in range(3):
try:
self._connection.send(pickle.dumps((name, args, kwargs)))
return pickle.loads(self._connection.recv())
except Exception:
self.__conn()
raise Exception("RPC connection lost!")
return do_rpc
def __init__(self, key, model_name):
from jina import Client
self.client = Client(port=12345, protocol="grpc", asyncio=True)
def _prepare_prompt(self, system, history, gen_conf):
from rag.svr.jina_server import Prompt
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
return Prompt(message=history, gen_conf=gen_conf)
def _stream_response(self, endpoint, prompt):
from rag.svr.jina_server import Generation
answer = ""
try:
res = self.client.stream_doc(
on=endpoint, inputs=prompt, return_type=Generation
)
loop = asyncio.get_event_loop()
try:
while True:
answer = loop.run_until_complete(res.__anext__()).text
yield answer
except StopAsyncIteration:
pass
except Exception as e:
yield answer + "\n**ERROR**: " + str(e)
yield num_tokens_from_string(answer)
def chat(self, system, history, gen_conf):
prompt = self._prepare_prompt(system, history, gen_conf)
chat_gen = self._stream_response("/chat", prompt)
ans = next(chat_gen)
total_tokens = next(chat_gen)
return ans, total_tokens
def chat_streamly(self, system, history, gen_conf):
prompt = self._prepare_prompt(system, history, gen_conf)
return self._stream_response("/stream", prompt)
class VolcEngineChat(Base):
def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'):
"""
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
model_name is for display only
"""
base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3'
ark_api_key = json.loads(key).get('ark_api_key', '')
model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
super().__init__(ark_api_key, model_name, base_url)
class MiniMaxChat(Base):
def __init__(
self,
key,
model_name,
base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
):
if not base_url:
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
self.base_url = base_url
self.model_name = model_name
self.api_key = key
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps(
{"model": self.model_name, "messages": history, **gen_conf}
)
try:
response = requests.request(
"POST", url=self.base_url, headers=headers, data=payload
)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response["usage"]["total_tokens"]
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps(
{
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
)
response = requests.request(
"POST",
url=self.base_url,
headers=headers,
data=payload,
)
for resp in response.text.split("\n\n")[:-1]:
resp = json.loads(resp[6:])
text = ""
if "choices" in resp and "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
ans += text
total_tokens = (
total_tokens + num_tokens_from_string(text)
if "usage" not in resp
else resp["usage"]["total_tokens"]
)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class MistralChat(Base):
def __init__(self, key, model_name, base_url=None):
from mistralai.client import MistralClient
self.client = MistralClient(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
try:
response = self.client.chat(
model=self.model_name,
messages=history,
**gen_conf)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(
model=self.model_name,
messages=history,
**gen_conf)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:
continue
ans += resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class BedrockChat(Base):
def __init__(self, key, model_name, **kwargs):
import boto3
self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
self.bedrock_region = json.loads(key).get('bedrock_region', '')
self.model_name = model_name
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
def chat(self, system, history, gen_conf):
from botocore.exceptions import ClientError
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
if "max_tokens" in gen_conf:
gen_conf["maxTokens"] = gen_conf["max_tokens"]
_ = gen_conf.pop("max_tokens")
if "top_p" in gen_conf:
gen_conf["topP"] = gen_conf["top_p"]
_ = gen_conf.pop("top_p")
for item in history:
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
item["content"] = [{"text": item["content"]}]
try:
# Send the message to the model, using a basic inference configuration.
response = self.client.converse(
modelId=self.model_name,
messages=history,
inferenceConfig=gen_conf,
system=[{"text": (system if system else "Answer the user's message.")}],
)
# Extract and print the response text.
ans = response["output"]["message"]["content"][0]["text"]
return ans, num_tokens_from_string(ans)
except (ClientError, Exception) as e:
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
def chat_streamly(self, system, history, gen_conf):
from botocore.exceptions import ClientError
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
if "max_tokens" in gen_conf:
gen_conf["maxTokens"] = gen_conf["max_tokens"]
_ = gen_conf.pop("max_tokens")
if "top_p" in gen_conf:
gen_conf["topP"] = gen_conf["top_p"]
_ = gen_conf.pop("top_p")
for item in history:
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
item["content"] = [{"text": item["content"]}]
if self.model_name.split('.')[0] == 'ai21':
try:
response = self.client.converse(
modelId=self.model_name,
messages=history,
inferenceConfig=gen_conf,
system=[{"text": (system if system else "Answer the user's message.")}]
)
ans = response["output"]["message"]["content"][0]["text"]
return ans, num_tokens_from_string(ans)
except (ClientError, Exception) as e:
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
ans = ""
try:
# Send the message to the model, using a basic inference configuration.
streaming_response = self.client.converse_stream(
modelId=self.model_name,
messages=history,
inferenceConfig=gen_conf,
system=[{"text": (system if system else "Answer the user's message.")}]
)
# Extract and print the streamed response text in real-time.
for resp in streaming_response["stream"]:
if "contentBlockDelta" in resp:
ans += resp["contentBlockDelta"]["delta"]["text"]
yield ans
except (ClientError, Exception) as e:
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
yield num_tokens_from_string(ans)
class GeminiChat(Base):
def __init__(self, key, model_name, base_url=None):
from google.generativeai import client, GenerativeModel
client.configure(api_key=key)
_client = client.get_default_generative_client()
self.model_name = 'models/' + model_name
self.model = GenerativeModel(model_name=self.model_name)
self.model._client = _client
def chat(self, system, history, gen_conf):
from google.generativeai.types import content_types
if system:
self.model._system_instruction = content_types.to_content(system)
if 'max_tokens' in gen_conf:
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if 'role' in item and item['role'] == 'assistant':
item['role'] = 'model'
if 'role' in item and item['role'] == 'system':
item['role'] = 'user'
if 'content' in item:
item['parts'] = item.pop('content')
try:
response = self.model.generate_content(
history,
generation_config=gen_conf)
ans = response.text
return ans, response.usage_metadata.total_token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
from google.generativeai.types import content_types
if system:
self.model._system_instruction = content_types.to_content(system)
if 'max_tokens' in gen_conf:
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if 'role' in item and item['role'] == 'assistant':
item['role'] = 'model'
if 'content' in item:
item['parts'] = item.pop('content')
ans = ""
try:
response = self.model.generate_content(
history,
generation_config=gen_conf, stream=True)
for resp in response:
ans += resp.text
yield ans
yield response._chunks[-1].usage_metadata.total_token_count
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
class GroqChat:
def __init__(self, key, model_name, base_url=''):
self.client = Groq(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf
)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf
)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:
continue
ans += resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
## openrouter
class OpenRouterChat(Base):
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
super().__init__(key, model_name, base_url)
class StepFunChat(Base):
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
if not base_url:
base_url = "https://api.stepfun.com/v1"
super().__init__(key, model_name, base_url)
class NvidiaChat(Base):
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
if not base_url:
base_url = "https://integrate.api.nvidia.com/v1"
super().__init__(key, model_name, base_url)
class LmStudioChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
class OpenAI_APIChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
model_name = model_name.split("___")[0]
super().__init__(key, model_name, base_url)
class CoHereChat(Base):
def __init__(self, key, model_name, base_url=""):
from cohere import Client
self.client = Client(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
try:
response = self.client.chat(
model=self.model_name, chat_history=history, message=mes, **gen_conf
)
ans = response.text
if response.finish_reason == "MAX_TOKENS":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
)
return (
ans,
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(
model=self.model_name, chat_history=history, message=mes, **gen_conf
)
for resp in response:
if resp.event_type == "text-generation":
ans += resp.text
total_tokens += num_tokens_from_string(resp.text)
elif resp.event_type == "stream-end":
if resp.finish_reason == "MAX_TOKENS":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class LeptonAIChat(Base):
def __init__(self, key, model_name, base_url=None):
if not base_url:
base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1")
super().__init__(key, model_name, base_url)
class TogetherAIChat(Base):
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
if not base_url:
base_url = "https://api.together.xyz/v1"
super().__init__(key, model_name, base_url)
class PerfXCloudChat(Base):
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
if not base_url:
base_url = "https://cloud.perfxlab.cn/v1"
super().__init__(key, model_name, base_url)
class UpstageChat(Base):
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
if not base_url:
base_url = "https://api.upstage.ai/v1/solar"
super().__init__(key, model_name, base_url)
class NovitaAIChat(Base):
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"):
if not base_url:
base_url = "https://api.novita.ai/v3/openai"
super().__init__(key, model_name, base_url)
class SILICONFLOWChat(Base):
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"):
if not base_url:
base_url = "https://api.siliconflow.cn/v1"
super().__init__(key, model_name, base_url)
class YiChat(Base):
def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"):
if not base_url:
base_url = "https://api.lingyiwanwu.com/v1"
super().__init__(key, model_name, base_url)
class ReplicateChat(Base):
def __init__(self, key, model_name, base_url=None):
from replicate.client import Client
self.model_name = model_name
self.client = Client(api_token=key)
self.system = ""
def chat(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
if system:
self.system = system
prompt = "\n".join(
[item["role"] + ":" + item["content"] for item in history[-5:]]
)
ans = ""
try:
response = self.client.run(
self.model_name,
input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
)
ans = "".join(response)
return ans, num_tokens_from_string(ans)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
if system:
self.system = system
prompt = "\n".join(
[item["role"] + ":" + item["content"] for item in history[-5:]]
)
ans = ""
try:
response = self.client.run(
self.model_name,
input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
)
for resp in response:
ans += resp
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield num_tokens_from_string(ans)
class HunyuanChat(Base):
def __init__(self, key, model_name, base_url=None):
from tencentcloud.common import credential
from tencentcloud.hunyuan.v20230901 import hunyuan_client
key = json.loads(key)
sid = key.get("hunyuan_sid", "")
sk = key.get("hunyuan_sk", "")
cred = credential.Credential(sid, sk)
self.model_name = model_name
self.client = hunyuan_client.HunyuanClient(cred, "")
def chat(self, system, history, gen_conf):
from tencentcloud.hunyuan.v20230901 import models
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
TencentCloudSDKException,
)
_gen_conf = {}
_history = [{k.capitalize(): v for k, v in item.items()} for item in history]
if system:
_history.insert(0, {"Role": "system", "Content": system})
if "temperature" in gen_conf:
_gen_conf["Temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
_gen_conf["TopP"] = gen_conf["top_p"]
req = models.ChatCompletionsRequest()
params = {"Model": self.model_name, "Messages": _history, **_gen_conf}
req.from_json_string(json.dumps(params))
ans = ""
try:
response = self.client.ChatCompletions(req)
ans = response.Choices[0].Message.Content
return ans, response.Usage.TotalTokens
except TencentCloudSDKException as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
from tencentcloud.hunyuan.v20230901 import models
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
TencentCloudSDKException,
)
_gen_conf = {}
_history = [{k.capitalize(): v for k, v in item.items()} for item in history]
if system:
_history.insert(0, {"Role": "system", "Content": system})
if "temperature" in gen_conf:
_gen_conf["Temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
_gen_conf["TopP"] = gen_conf["top_p"]
req = models.ChatCompletionsRequest()
params = {
"Model": self.model_name,
"Messages": _history,
"Stream": True,
**_gen_conf,
}
req.from_json_string(json.dumps(params))
ans = ""
total_tokens = 0
try:
response = self.client.ChatCompletions(req)
for resp in response:
resp = json.loads(resp["data"])
if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
continue
ans += resp["Choices"][0]["Delta"]["Content"]
total_tokens += 1
yield ans
except TencentCloudSDKException as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class SparkChat(Base):
def __init__(
self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1"
):
if not base_url:
base_url = "https://spark-api-open.xf-yun.com/v1"
model2version = {
"Spark-Max": "generalv3.5",
"Spark-Lite": "general",
"Spark-Pro": "generalv3",
"Spark-Pro-128K": "pro-128k",
"Spark-4.0-Ultra": "4.0Ultra",
}
version2model = {v: k for k, v in model2version.items()}
assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
if model_name in model2version:
model_version = model2version[model_name]
else:
model_version = model_name
super().__init__(key, model_version, base_url)
class BaiduYiyanChat(Base):
def __init__(self, key, model_name, base_url=None):
import qianfan
key = json.loads(key)
ak = key.get("yiyan_ak", "")
sk = key.get("yiyan_sk", "")
self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
self.model_name = model_name.lower()
self.system = ""
def chat(self, system, history, gen_conf):
if system:
self.system = system
gen_conf["penalty_score"] = (
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
0)) / 2
) + 1
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
ans = ""
try:
response = self.client.do(
model=self.model_name,
messages=history,
system=self.system,
**gen_conf
).body
ans = response['result']
return ans, response["usage"]["total_tokens"]
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
self.system = system
gen_conf["penalty_score"] = (
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
0)) / 2
) + 1
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.do(
model=self.model_name,
messages=history,
system=self.system,
stream=True,
**gen_conf
)
for resp in response:
resp = resp.body
ans += resp['result']
total_tokens = resp["usage"]["total_tokens"]
yield ans
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
yield total_tokens
class AnthropicChat(Base):
def __init__(self, key, model_name, base_url=None):
import anthropic
self.client = anthropic.Anthropic(api_key=key)
self.model_name = model_name
self.system = ""
def chat(self, system, history, gen_conf):
if system:
self.system = system
if "max_tokens" not in gen_conf:
gen_conf["max_tokens"] = 4096
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=self.system,
stream=False,
**gen_conf,
).to_dict()
ans = response["content"][0]["text"]
if response["stop_reason"] == "max_tokens":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
)
return (
ans,
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
self.system = system
if "max_tokens" not in gen_conf:
gen_conf["max_tokens"] = 4096
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
ans = ""
total_tokens = 0
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=self.system,
stream=True,
**gen_conf,
)
for res in response.iter_lines():
if res.type == 'content_block_delta':
text = res.delta.text
ans += text
total_tokens += num_tokens_from_string(text)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class GoogleChat(Base):
def __init__(self, key, model_name, base_url=None):
from google.oauth2 import service_account
import base64
key = json.load(key)
access_token = json.loads(
base64.b64decode(key.get("google_service_account_key", ""))
)
project_id = key.get("google_project_id", "")
region = key.get("google_region", "")
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
self.model_name = model_name
self.system = ""
if "claude" in self.model_name:
from anthropic import AnthropicVertex
from google.auth.transport.requests import Request
if access_token:
credits = service_account.Credentials.from_service_account_info(
access_token, scopes=scopes
)
request = Request()
credits.refresh(request)
token = credits.token
self.client = AnthropicVertex(
region=region, project_id=project_id, access_token=token
)
else:
self.client = AnthropicVertex(region=region, project_id=project_id)
else:
from google.cloud import aiplatform
import vertexai.generative_models as glm
if access_token:
credits = service_account.Credentials.from_service_account_info(
access_token
)
aiplatform.init(
credentials=credits, project=project_id, location=region
)
else:
aiplatform.init(project=project_id, location=region)
self.client = glm.GenerativeModel(model_name=self.model_name)
def chat(self, system, history, gen_conf):
if system:
self.system = system
if "claude" in self.model_name:
if "max_tokens" not in gen_conf:
gen_conf["max_tokens"] = 4096
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=self.system,
stream=False,
**gen_conf,
).json()
ans = response["content"][0]["text"]
if response["stop_reason"] == "max_tokens":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
)
return (
ans,
response["usage"]["input_tokens"]
+ response["usage"]["output_tokens"],
)
except Exception as e:
return "\n**ERROR**: " + str(e), 0
else:
self.client._system_instruction = self.system
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = item.pop("content")
try:
response = self.client.generate_content(
history, generation_config=gen_conf
)
ans = response.text
return ans, response.usage_metadata.total_token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
self.system = system
if "claude" in self.model_name:
if "max_tokens" not in gen_conf:
gen_conf["max_tokens"] = 4096
ans = ""
total_tokens = 0
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=self.system,
stream=True,
**gen_conf,
)
for res in response.iter_lines():
res = res.decode("utf-8")
if "content_block_delta" in res and "data" in res:
text = json.loads(res[6:])["delta"]["text"]
ans += text
total_tokens += num_tokens_from_string(text)
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
else:
self.client._system_instruction = self.system
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = item.pop("content")
ans = ""
try:
response = self.model.generate_content(
history, generation_config=gen_conf, stream=True
)
for resp in response:
ans += resp.text
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield response._chunks[-1].usage_metadata.total_token_count