|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
|
|
from openai.lib.azure import AzureOpenAI |
|
from zhipuai import ZhipuAI |
|
from dashscope import Generation |
|
from abc import ABC |
|
from openai import OpenAI |
|
import openai |
|
from ollama import Client |
|
from rag.nlp import is_chinese, is_english |
|
from rag.utils import num_tokens_from_string |
|
from groq import Groq |
|
import os |
|
import json |
|
import requests |
|
import asyncio |
|
|
|
LENGTH_NOTIFICATION_CN = "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
LENGTH_NOTIFICATION_EN = "...\nFor the content length reason, it stopped, continue?" |
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name, base_url): |
|
timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600)) |
|
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf) |
|
ans = response.choices[0].message.content.strip() |
|
if response.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
return ans, response.usage.total_tokens |
|
except openai.APIError as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
stream=True, |
|
**gen_conf) |
|
for resp in response: |
|
if not resp.choices: |
|
continue |
|
if not resp.choices[0].delta.content: |
|
resp.choices[0].delta.content = "" |
|
ans += resp.choices[0].delta.content |
|
|
|
if not hasattr(resp, "usage") or not resp.usage: |
|
total_tokens = ( |
|
total_tokens |
|
+ num_tokens_from_string(resp.choices[0].delta.content) |
|
) |
|
elif isinstance(resp.usage, dict): |
|
total_tokens = resp.usage.get("total_tokens", total_tokens) |
|
else: |
|
total_tokens = resp.usage.total_tokens |
|
|
|
if resp.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
yield ans |
|
|
|
except openai.APIError as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
class GptTurbo(Base): |
|
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): |
|
if not base_url: |
|
base_url = "https://api.openai.com/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class MoonshotChat(Base): |
|
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"): |
|
if not base_url: |
|
base_url = "https://api.moonshot.cn/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class XinferenceChat(Base): |
|
def __init__(self, key=None, model_name="", base_url=""): |
|
if not base_url: |
|
raise ValueError("Local llm url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class HuggingFaceChat(Base): |
|
def __init__(self, key=None, model_name="", base_url=""): |
|
if not base_url: |
|
raise ValueError("Local llm url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
super().__init__(key, model_name.split("___")[0], base_url) |
|
|
|
|
|
class DeepSeekChat(Base): |
|
def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"): |
|
if not base_url: |
|
base_url = "https://api.deepseek.com/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class AzureChat(Base): |
|
def __init__(self, key, model_name, **kwargs): |
|
api_key = json.loads(key).get('api_key', '') |
|
api_version = json.loads(key).get('api_version', '2024-02-01') |
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version) |
|
self.model_name = model_name |
|
|
|
|
|
class BaiChuanChat(Base): |
|
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"): |
|
if not base_url: |
|
base_url = "https://api.baichuan-ai.com/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
@staticmethod |
|
def _format_params(params): |
|
return { |
|
"temperature": params.get("temperature", 0.3), |
|
"max_tokens": params.get("max_tokens", 2048), |
|
"top_p": params.get("top_p", 0.85), |
|
} |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
extra_body={ |
|
"tools": [{ |
|
"type": "web_search", |
|
"web_search": { |
|
"enable": True, |
|
"search_mode": "performance_first" |
|
} |
|
}] |
|
}, |
|
**self._format_params(gen_conf)) |
|
ans = response.choices[0].message.content.strip() |
|
if response.choices[0].finish_reason == "length": |
|
if is_chinese([ans]): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
return ans, response.usage.total_tokens |
|
except openai.APIError as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
extra_body={ |
|
"tools": [{ |
|
"type": "web_search", |
|
"web_search": { |
|
"enable": True, |
|
"search_mode": "performance_first" |
|
} |
|
}] |
|
}, |
|
stream=True, |
|
**self._format_params(gen_conf)) |
|
for resp in response: |
|
if not resp.choices: |
|
continue |
|
if not resp.choices[0].delta.content: |
|
resp.choices[0].delta.content = "" |
|
ans += resp.choices[0].delta.content |
|
total_tokens = ( |
|
( |
|
total_tokens |
|
+ num_tokens_from_string(resp.choices[0].delta.content) |
|
) |
|
if not hasattr(resp, "usage") |
|
else resp.usage["total_tokens"] |
|
) |
|
if resp.choices[0].finish_reason == "length": |
|
if is_chinese([ans]): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
yield ans |
|
|
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
class QWenChat(Base): |
|
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs): |
|
import dashscope |
|
dashscope.api_key = key |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true' |
|
if not stream_flag: |
|
from http import HTTPStatus |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
|
|
response = Generation.call( |
|
self.model_name, |
|
messages=history, |
|
result_format='message', |
|
**gen_conf |
|
) |
|
ans = "" |
|
tk_count = 0 |
|
if response.status_code == HTTPStatus.OK: |
|
ans += response.output.choices[0]['message']['content'] |
|
tk_count += response.usage.total_tokens |
|
if response.output.choices[0].get("finish_reason", "") == "length": |
|
if is_chinese([ans]): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
return ans, tk_count |
|
|
|
return "**ERROR**: " + response.message, tk_count |
|
else: |
|
g = self._chat_streamly(system, history, gen_conf, incremental_output=True) |
|
result_list = list(g) |
|
error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0] |
|
if len(error_msg_list) > 0: |
|
return "**ERROR**: " + "".join(error_msg_list) , 0 |
|
else: |
|
return "".join(result_list[:-1]), result_list[-1] |
|
|
|
def _chat_streamly(self, system, history, gen_conf, incremental_output=False): |
|
from http import HTTPStatus |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
ans = "" |
|
tk_count = 0 |
|
try: |
|
response = Generation.call( |
|
self.model_name, |
|
messages=history, |
|
result_format='message', |
|
stream=True, |
|
incremental_output=incremental_output, |
|
**gen_conf |
|
) |
|
for resp in response: |
|
if resp.status_code == HTTPStatus.OK: |
|
ans = resp.output.choices[0]['message']['content'] |
|
tk_count = resp.usage.total_tokens |
|
if resp.output.choices[0].get("finish_reason", "") == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
yield ans |
|
else: |
|
yield ans + "\n**ERROR**: " + resp.message if not re.search(r" (key|quota)", str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**" |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield tk_count |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
return self._chat_streamly(system, history, gen_conf) |
|
|
|
|
|
class ZhipuChat(Base): |
|
def __init__(self, key, model_name="glm-3-turbo", **kwargs): |
|
self.client = ZhipuAI(api_key=key) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
if "presence_penalty" in gen_conf: |
|
del gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
del gen_conf["frequency_penalty"] |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf |
|
) |
|
ans = response.choices[0].message.content.strip() |
|
if response.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
return ans, response.usage.total_tokens |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
if "presence_penalty" in gen_conf: |
|
del gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
del gen_conf["frequency_penalty"] |
|
ans = "" |
|
tk_count = 0 |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
stream=True, |
|
**gen_conf |
|
) |
|
for resp in response: |
|
if not resp.choices[0].delta.content: |
|
continue |
|
delta = resp.choices[0].delta.content |
|
ans += delta |
|
if resp.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
tk_count = resp.usage.total_tokens |
|
if resp.choices[0].finish_reason == "stop": |
|
tk_count = resp.usage.total_tokens |
|
yield ans |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield tk_count |
|
|
|
|
|
class OllamaChat(Base): |
|
def __init__(self, key, model_name, **kwargs): |
|
self.client = Client(host=kwargs["base_url"]) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
options = {} |
|
if "temperature" in gen_conf: |
|
options["temperature"] = gen_conf["temperature"] |
|
if "max_tokens" in gen_conf: |
|
options["num_predict"] = gen_conf["max_tokens"] |
|
if "top_p" in gen_conf: |
|
options["top_p"] = gen_conf["top_p"] |
|
if "presence_penalty" in gen_conf: |
|
options["presence_penalty"] = gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
options["frequency_penalty"] = gen_conf["frequency_penalty"] |
|
response = self.client.chat( |
|
model=self.model_name, |
|
messages=history, |
|
options=options, |
|
keep_alive=-1 |
|
) |
|
ans = response["message"]["content"].strip() |
|
return ans, response.get("eval_count", 0) + response.get("prompt_eval_count", 0) |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
options = {} |
|
if "temperature" in gen_conf: |
|
options["temperature"] = gen_conf["temperature"] |
|
if "max_tokens" in gen_conf: |
|
options["num_predict"] = gen_conf["max_tokens"] |
|
if "top_p" in gen_conf: |
|
options["top_p"] = gen_conf["top_p"] |
|
if "presence_penalty" in gen_conf: |
|
options["presence_penalty"] = gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
options["frequency_penalty"] = gen_conf["frequency_penalty"] |
|
ans = "" |
|
try: |
|
response = self.client.chat( |
|
model=self.model_name, |
|
messages=history, |
|
stream=True, |
|
options=options, |
|
keep_alive=-1 |
|
) |
|
for resp in response: |
|
if resp["done"]: |
|
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) |
|
ans += resp["message"]["content"] |
|
yield ans |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
yield 0 |
|
|
|
|
|
class LocalAIChat(Base): |
|
def __init__(self, key, model_name, base_url): |
|
if not base_url: |
|
raise ValueError("Local llm url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key="empty", base_url=base_url) |
|
self.model_name = model_name.split("___")[0] |
|
|
|
|
|
class LocalLLM(Base): |
|
class RPCProxy: |
|
def __init__(self, host, port): |
|
self.host = host |
|
self.port = int(port) |
|
self.__conn() |
|
|
|
def __conn(self): |
|
from multiprocessing.connection import Client |
|
|
|
self._connection = Client( |
|
(self.host, self.port), authkey=b"infiniflow-token4kevinhu" |
|
) |
|
|
|
def __getattr__(self, name): |
|
import pickle |
|
|
|
def do_rpc(*args, **kwargs): |
|
for _ in range(3): |
|
try: |
|
self._connection.send(pickle.dumps((name, args, kwargs))) |
|
return pickle.loads(self._connection.recv()) |
|
except Exception: |
|
self.__conn() |
|
raise Exception("RPC connection lost!") |
|
|
|
return do_rpc |
|
|
|
def __init__(self, key, model_name): |
|
from jina import Client |
|
|
|
self.client = Client(port=12345, protocol="grpc", asyncio=True) |
|
|
|
def _prepare_prompt(self, system, history, gen_conf): |
|
from rag.svr.jina_server import Prompt |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") |
|
return Prompt(message=history, gen_conf=gen_conf) |
|
|
|
def _stream_response(self, endpoint, prompt): |
|
from rag.svr.jina_server import Generation |
|
answer = "" |
|
try: |
|
res = self.client.stream_doc( |
|
on=endpoint, inputs=prompt, return_type=Generation |
|
) |
|
loop = asyncio.get_event_loop() |
|
try: |
|
while True: |
|
answer = loop.run_until_complete(res.__anext__()).text |
|
yield answer |
|
except StopAsyncIteration: |
|
pass |
|
except Exception as e: |
|
yield answer + "\n**ERROR**: " + str(e) |
|
yield num_tokens_from_string(answer) |
|
|
|
def chat(self, system, history, gen_conf): |
|
prompt = self._prepare_prompt(system, history, gen_conf) |
|
chat_gen = self._stream_response("/chat", prompt) |
|
ans = next(chat_gen) |
|
total_tokens = next(chat_gen) |
|
return ans, total_tokens |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
prompt = self._prepare_prompt(system, history, gen_conf) |
|
return self._stream_response("/stream", prompt) |
|
|
|
|
|
class VolcEngineChat(Base): |
|
def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'): |
|
""" |
|
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special, |
|
Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use |
|
model_name is for display only |
|
""" |
|
base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3' |
|
ark_api_key = json.loads(key).get('ark_api_key', '') |
|
model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '') |
|
super().__init__(ark_api_key, model_name, base_url) |
|
|
|
|
|
class MiniMaxChat(Base): |
|
def __init__( |
|
self, |
|
key, |
|
model_name, |
|
base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", |
|
): |
|
if not base_url: |
|
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2" |
|
self.base_url = base_url |
|
self.model_name = model_name |
|
self.api_key = key |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_tokens"]: |
|
del gen_conf[k] |
|
headers = { |
|
"Authorization": f"Bearer {self.api_key}", |
|
"Content-Type": "application/json", |
|
} |
|
payload = json.dumps( |
|
{"model": self.model_name, "messages": history, **gen_conf} |
|
) |
|
try: |
|
response = requests.request( |
|
"POST", url=self.base_url, headers=headers, data=payload |
|
) |
|
response = response.json() |
|
ans = response["choices"][0]["message"]["content"].strip() |
|
if response["choices"][0]["finish_reason"] == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
return ans, response["usage"]["total_tokens"] |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
headers = { |
|
"Authorization": f"Bearer {self.api_key}", |
|
"Content-Type": "application/json", |
|
} |
|
payload = json.dumps( |
|
{ |
|
"model": self.model_name, |
|
"messages": history, |
|
"stream": True, |
|
**gen_conf, |
|
} |
|
) |
|
response = requests.request( |
|
"POST", |
|
url=self.base_url, |
|
headers=headers, |
|
data=payload, |
|
) |
|
for resp in response.text.split("\n\n")[:-1]: |
|
resp = json.loads(resp[6:]) |
|
text = "" |
|
if "choices" in resp and "delta" in resp["choices"][0]: |
|
text = resp["choices"][0]["delta"]["content"] |
|
ans += text |
|
total_tokens = ( |
|
total_tokens + num_tokens_from_string(text) |
|
if "usage" not in resp |
|
else resp["usage"]["total_tokens"] |
|
) |
|
yield ans |
|
|
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
class MistralChat(Base): |
|
|
|
def __init__(self, key, model_name, base_url=None): |
|
from mistralai.client import MistralClient |
|
self.client = MistralClient(api_key=key) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_tokens"]: |
|
del gen_conf[k] |
|
try: |
|
response = self.client.chat( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf) |
|
ans = response.choices[0].message.content |
|
if response.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
return ans, response.usage.total_tokens |
|
except openai.APIError as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_tokens"]: |
|
del gen_conf[k] |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.chat_stream( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf) |
|
for resp in response: |
|
if not resp.choices or not resp.choices[0].delta.content: |
|
continue |
|
ans += resp.choices[0].delta.content |
|
total_tokens += 1 |
|
if resp.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
yield ans |
|
|
|
except openai.APIError as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
class BedrockChat(Base): |
|
|
|
def __init__(self, key, model_name, **kwargs): |
|
import boto3 |
|
self.bedrock_ak = json.loads(key).get('bedrock_ak', '') |
|
self.bedrock_sk = json.loads(key).get('bedrock_sk', '') |
|
self.bedrock_region = json.loads(key).get('bedrock_region', '') |
|
self.model_name = model_name |
|
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region, |
|
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) |
|
|
|
def chat(self, system, history, gen_conf): |
|
from botocore.exceptions import ClientError |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_tokens"]: |
|
del gen_conf[k] |
|
if "max_tokens" in gen_conf: |
|
gen_conf["maxTokens"] = gen_conf["max_tokens"] |
|
_ = gen_conf.pop("max_tokens") |
|
if "top_p" in gen_conf: |
|
gen_conf["topP"] = gen_conf["top_p"] |
|
_ = gen_conf.pop("top_p") |
|
for item in history: |
|
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple): |
|
item["content"] = [{"text": item["content"]}] |
|
|
|
try: |
|
|
|
response = self.client.converse( |
|
modelId=self.model_name, |
|
messages=history, |
|
inferenceConfig=gen_conf, |
|
system=[{"text": (system if system else "Answer the user's message.")}], |
|
) |
|
|
|
|
|
ans = response["output"]["message"]["content"][0]["text"] |
|
return ans, num_tokens_from_string(ans) |
|
|
|
except (ClientError, Exception) as e: |
|
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
from botocore.exceptions import ClientError |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_tokens"]: |
|
del gen_conf[k] |
|
if "max_tokens" in gen_conf: |
|
gen_conf["maxTokens"] = gen_conf["max_tokens"] |
|
_ = gen_conf.pop("max_tokens") |
|
if "top_p" in gen_conf: |
|
gen_conf["topP"] = gen_conf["top_p"] |
|
_ = gen_conf.pop("top_p") |
|
for item in history: |
|
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple): |
|
item["content"] = [{"text": item["content"]}] |
|
|
|
if self.model_name.split('.')[0] == 'ai21': |
|
try: |
|
response = self.client.converse( |
|
modelId=self.model_name, |
|
messages=history, |
|
inferenceConfig=gen_conf, |
|
system=[{"text": (system if system else "Answer the user's message.")}] |
|
) |
|
ans = response["output"]["message"]["content"][0]["text"] |
|
return ans, num_tokens_from_string(ans) |
|
|
|
except (ClientError, Exception) as e: |
|
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 |
|
|
|
ans = "" |
|
try: |
|
|
|
streaming_response = self.client.converse_stream( |
|
modelId=self.model_name, |
|
messages=history, |
|
inferenceConfig=gen_conf, |
|
system=[{"text": (system if system else "Answer the user's message.")}] |
|
) |
|
|
|
|
|
for resp in streaming_response["stream"]: |
|
if "contentBlockDelta" in resp: |
|
ans += resp["contentBlockDelta"]["delta"]["text"] |
|
yield ans |
|
|
|
except (ClientError, Exception) as e: |
|
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}" |
|
|
|
yield num_tokens_from_string(ans) |
|
|
|
|
|
class GeminiChat(Base): |
|
|
|
def __init__(self, key, model_name, base_url=None): |
|
from google.generativeai import client, GenerativeModel |
|
|
|
client.configure(api_key=key) |
|
_client = client.get_default_generative_client() |
|
self.model_name = 'models/' + model_name |
|
self.model = GenerativeModel(model_name=self.model_name) |
|
self.model._client = _client |
|
|
|
def chat(self, system, history, gen_conf): |
|
from google.generativeai.types import content_types |
|
|
|
if system: |
|
self.model._system_instruction = content_types.to_content(system) |
|
|
|
if 'max_tokens' in gen_conf: |
|
gen_conf['max_output_tokens'] = gen_conf['max_tokens'] |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_output_tokens"]: |
|
del gen_conf[k] |
|
for item in history: |
|
if 'role' in item and item['role'] == 'assistant': |
|
item['role'] = 'model' |
|
if 'role' in item and item['role'] == 'system': |
|
item['role'] = 'user' |
|
if 'content' in item: |
|
item['parts'] = item.pop('content') |
|
|
|
try: |
|
response = self.model.generate_content( |
|
history, |
|
generation_config=gen_conf) |
|
ans = response.text |
|
return ans, response.usage_metadata.total_token_count |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
from google.generativeai.types import content_types |
|
|
|
if system: |
|
self.model._system_instruction = content_types.to_content(system) |
|
if 'max_tokens' in gen_conf: |
|
gen_conf['max_output_tokens'] = gen_conf['max_tokens'] |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_output_tokens"]: |
|
del gen_conf[k] |
|
for item in history: |
|
if 'role' in item and item['role'] == 'assistant': |
|
item['role'] = 'model' |
|
if 'content' in item: |
|
item['parts'] = item.pop('content') |
|
ans = "" |
|
try: |
|
response = self.model.generate_content( |
|
history, |
|
generation_config=gen_conf, stream=True) |
|
for resp in response: |
|
ans += resp.text |
|
yield ans |
|
|
|
yield response._chunks[-1].usage_metadata.total_token_count |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield 0 |
|
|
|
|
|
class GroqChat: |
|
def __init__(self, key, model_name, base_url=''): |
|
self.client = Groq(api_key=key) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_tokens"]: |
|
del gen_conf[k] |
|
ans = "" |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf |
|
) |
|
ans = response.choices[0].message.content |
|
if response.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
return ans, response.usage.total_tokens |
|
except Exception as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_tokens"]: |
|
del gen_conf[k] |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
stream=True, |
|
**gen_conf |
|
) |
|
for resp in response: |
|
if not resp.choices or not resp.choices[0].delta.content: |
|
continue |
|
ans += resp.choices[0].delta.content |
|
total_tokens += 1 |
|
if resp.choices[0].finish_reason == "length": |
|
if is_chinese(ans): |
|
ans += LENGTH_NOTIFICATION_CN |
|
else: |
|
ans += LENGTH_NOTIFICATION_EN |
|
yield ans |
|
|
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
|
|
class OpenRouterChat(Base): |
|
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"): |
|
if not base_url: |
|
base_url = "https://openrouter.ai/api/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class StepFunChat(Base): |
|
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"): |
|
if not base_url: |
|
base_url = "https://api.stepfun.com/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class NvidiaChat(Base): |
|
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"): |
|
if not base_url: |
|
base_url = "https://integrate.api.nvidia.com/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class LmStudioChat(Base): |
|
def __init__(self, key, model_name, base_url): |
|
if not base_url: |
|
raise ValueError("Local llm url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url) |
|
self.model_name = model_name |
|
|
|
|
|
class OpenAI_APIChat(Base): |
|
def __init__(self, key, model_name, base_url): |
|
if not base_url: |
|
raise ValueError("url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
model_name = model_name.split("___")[0] |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class CoHereChat(Base): |
|
def __init__(self, key, model_name, base_url=""): |
|
from cohere import Client |
|
|
|
self.client = Client(api_key=key) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
if "top_p" in gen_conf: |
|
gen_conf["p"] = gen_conf.pop("top_p") |
|
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: |
|
gen_conf.pop("presence_penalty") |
|
for item in history: |
|
if "role" in item and item["role"] == "user": |
|
item["role"] = "USER" |
|
if "role" in item and item["role"] == "assistant": |
|
item["role"] = "CHATBOT" |
|
if "content" in item: |
|
item["message"] = item.pop("content") |
|
mes = history.pop()["message"] |
|
ans = "" |
|
try: |
|
response = self.client.chat( |
|
model=self.model_name, chat_history=history, message=mes, **gen_conf |
|
) |
|
ans = response.text |
|
if response.finish_reason == "MAX_TOKENS": |
|
ans += ( |
|
"...\nFor the content length reason, it stopped, continue?" |
|
if is_english([ans]) |
|
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
) |
|
return ( |
|
ans, |
|
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens, |
|
) |
|
except Exception as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
if "top_p" in gen_conf: |
|
gen_conf["p"] = gen_conf.pop("top_p") |
|
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: |
|
gen_conf.pop("presence_penalty") |
|
for item in history: |
|
if "role" in item and item["role"] == "user": |
|
item["role"] = "USER" |
|
if "role" in item and item["role"] == "assistant": |
|
item["role"] = "CHATBOT" |
|
if "content" in item: |
|
item["message"] = item.pop("content") |
|
mes = history.pop()["message"] |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.chat_stream( |
|
model=self.model_name, chat_history=history, message=mes, **gen_conf |
|
) |
|
for resp in response: |
|
if resp.event_type == "text-generation": |
|
ans += resp.text |
|
total_tokens += num_tokens_from_string(resp.text) |
|
elif resp.event_type == "stream-end": |
|
if resp.finish_reason == "MAX_TOKENS": |
|
ans += ( |
|
"...\nFor the content length reason, it stopped, continue?" |
|
if is_english([ans]) |
|
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
) |
|
yield ans |
|
|
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
class LeptonAIChat(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
if not base_url: |
|
base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1") |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class TogetherAIChat(Base): |
|
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"): |
|
if not base_url: |
|
base_url = "https://api.together.xyz/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class PerfXCloudChat(Base): |
|
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"): |
|
if not base_url: |
|
base_url = "https://cloud.perfxlab.cn/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class UpstageChat(Base): |
|
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"): |
|
if not base_url: |
|
base_url = "https://api.upstage.ai/v1/solar" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class NovitaAIChat(Base): |
|
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"): |
|
if not base_url: |
|
base_url = "https://api.novita.ai/v3/openai" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class SILICONFLOWChat(Base): |
|
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"): |
|
if not base_url: |
|
base_url = "https://api.siliconflow.cn/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class YiChat(Base): |
|
def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"): |
|
if not base_url: |
|
base_url = "https://api.lingyiwanwu.com/v1" |
|
super().__init__(key, model_name, base_url) |
|
|
|
|
|
class ReplicateChat(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
from replicate.client import Client |
|
|
|
self.model_name = model_name |
|
self.client = Client(api_token=key) |
|
self.system = "" |
|
|
|
def chat(self, system, history, gen_conf): |
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") |
|
if system: |
|
self.system = system |
|
prompt = "\n".join( |
|
[item["role"] + ":" + item["content"] for item in history[-5:]] |
|
) |
|
ans = "" |
|
try: |
|
response = self.client.run( |
|
self.model_name, |
|
input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, |
|
) |
|
ans = "".join(response) |
|
return ans, num_tokens_from_string(ans) |
|
except Exception as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") |
|
if system: |
|
self.system = system |
|
prompt = "\n".join( |
|
[item["role"] + ":" + item["content"] for item in history[-5:]] |
|
) |
|
ans = "" |
|
try: |
|
response = self.client.run( |
|
self.model_name, |
|
input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, |
|
) |
|
for resp in response: |
|
ans += resp |
|
yield ans |
|
|
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield num_tokens_from_string(ans) |
|
|
|
|
|
class HunyuanChat(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
from tencentcloud.common import credential |
|
from tencentcloud.hunyuan.v20230901 import hunyuan_client |
|
|
|
key = json.loads(key) |
|
sid = key.get("hunyuan_sid", "") |
|
sk = key.get("hunyuan_sk", "") |
|
cred = credential.Credential(sid, sk) |
|
self.model_name = model_name |
|
self.client = hunyuan_client.HunyuanClient(cred, "") |
|
|
|
def chat(self, system, history, gen_conf): |
|
from tencentcloud.hunyuan.v20230901 import models |
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( |
|
TencentCloudSDKException, |
|
) |
|
|
|
_gen_conf = {} |
|
_history = [{k.capitalize(): v for k, v in item.items()} for item in history] |
|
if system: |
|
_history.insert(0, {"Role": "system", "Content": system}) |
|
if "temperature" in gen_conf: |
|
_gen_conf["Temperature"] = gen_conf["temperature"] |
|
if "top_p" in gen_conf: |
|
_gen_conf["TopP"] = gen_conf["top_p"] |
|
|
|
req = models.ChatCompletionsRequest() |
|
params = {"Model": self.model_name, "Messages": _history, **_gen_conf} |
|
req.from_json_string(json.dumps(params)) |
|
ans = "" |
|
try: |
|
response = self.client.ChatCompletions(req) |
|
ans = response.Choices[0].Message.Content |
|
return ans, response.Usage.TotalTokens |
|
except TencentCloudSDKException as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
from tencentcloud.hunyuan.v20230901 import models |
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( |
|
TencentCloudSDKException, |
|
) |
|
|
|
_gen_conf = {} |
|
_history = [{k.capitalize(): v for k, v in item.items()} for item in history] |
|
if system: |
|
_history.insert(0, {"Role": "system", "Content": system}) |
|
|
|
if "temperature" in gen_conf: |
|
_gen_conf["Temperature"] = gen_conf["temperature"] |
|
if "top_p" in gen_conf: |
|
_gen_conf["TopP"] = gen_conf["top_p"] |
|
req = models.ChatCompletionsRequest() |
|
params = { |
|
"Model": self.model_name, |
|
"Messages": _history, |
|
"Stream": True, |
|
**_gen_conf, |
|
} |
|
req.from_json_string(json.dumps(params)) |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.ChatCompletions(req) |
|
for resp in response: |
|
resp = json.loads(resp["data"]) |
|
if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]: |
|
continue |
|
ans += resp["Choices"][0]["Delta"]["Content"] |
|
total_tokens += 1 |
|
|
|
yield ans |
|
|
|
except TencentCloudSDKException as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
class SparkChat(Base): |
|
def __init__( |
|
self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1" |
|
): |
|
if not base_url: |
|
base_url = "https://spark-api-open.xf-yun.com/v1" |
|
model2version = { |
|
"Spark-Max": "generalv3.5", |
|
"Spark-Lite": "general", |
|
"Spark-Pro": "generalv3", |
|
"Spark-Pro-128K": "pro-128k", |
|
"Spark-4.0-Ultra": "4.0Ultra", |
|
} |
|
version2model = {v: k for k, v in model2version.items()} |
|
assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}" |
|
if model_name in model2version: |
|
model_version = model2version[model_name] |
|
else: |
|
model_version = model_name |
|
super().__init__(key, model_version, base_url) |
|
|
|
|
|
class BaiduYiyanChat(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
import qianfan |
|
|
|
key = json.loads(key) |
|
ak = key.get("yiyan_ak", "") |
|
sk = key.get("yiyan_sk", "") |
|
self.client = qianfan.ChatCompletion(ak=ak, sk=sk) |
|
self.model_name = model_name.lower() |
|
self.system = "" |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
self.system = system |
|
gen_conf["penalty_score"] = ( |
|
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", |
|
0)) / 2 |
|
) + 1 |
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_output_tokens"] = gen_conf["max_tokens"] |
|
ans = "" |
|
|
|
try: |
|
response = self.client.do( |
|
model=self.model_name, |
|
messages=history, |
|
system=self.system, |
|
**gen_conf |
|
).body |
|
ans = response['result'] |
|
return ans, response["usage"]["total_tokens"] |
|
|
|
except Exception as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
self.system = system |
|
gen_conf["penalty_score"] = ( |
|
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", |
|
0)) / 2 |
|
) + 1 |
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_output_tokens"] = gen_conf["max_tokens"] |
|
ans = "" |
|
total_tokens = 0 |
|
|
|
try: |
|
response = self.client.do( |
|
model=self.model_name, |
|
messages=history, |
|
system=self.system, |
|
stream=True, |
|
**gen_conf |
|
) |
|
for resp in response: |
|
resp = resp.body |
|
ans += resp['result'] |
|
total_tokens = resp["usage"]["total_tokens"] |
|
|
|
yield ans |
|
|
|
except Exception as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
yield total_tokens |
|
|
|
|
|
class AnthropicChat(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
import anthropic |
|
|
|
self.client = anthropic.Anthropic(api_key=key) |
|
self.model_name = model_name |
|
self.system = "" |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
self.system = system |
|
if "max_tokens" not in gen_conf: |
|
gen_conf["max_tokens"] = 4096 |
|
if "presence_penalty" in gen_conf: |
|
del gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
del gen_conf["frequency_penalty"] |
|
|
|
ans = "" |
|
try: |
|
response = self.client.messages.create( |
|
model=self.model_name, |
|
messages=history, |
|
system=self.system, |
|
stream=False, |
|
**gen_conf, |
|
).to_dict() |
|
ans = response["content"][0]["text"] |
|
if response["stop_reason"] == "max_tokens": |
|
ans += ( |
|
"...\nFor the content length reason, it stopped, continue?" |
|
if is_english([ans]) |
|
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
) |
|
return ( |
|
ans, |
|
response["usage"]["input_tokens"] + response["usage"]["output_tokens"], |
|
) |
|
except Exception as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
self.system = system |
|
if "max_tokens" not in gen_conf: |
|
gen_conf["max_tokens"] = 4096 |
|
if "presence_penalty" in gen_conf: |
|
del gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
del gen_conf["frequency_penalty"] |
|
|
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.messages.create( |
|
model=self.model_name, |
|
messages=history, |
|
system=self.system, |
|
stream=True, |
|
**gen_conf, |
|
) |
|
for res in response.iter_lines(): |
|
if res.type == 'content_block_delta': |
|
text = res.delta.text |
|
ans += text |
|
total_tokens += num_tokens_from_string(text) |
|
yield ans |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
|
|
|
|
class GoogleChat(Base): |
|
def __init__(self, key, model_name, base_url=None): |
|
from google.oauth2 import service_account |
|
import base64 |
|
|
|
key = json.load(key) |
|
access_token = json.loads( |
|
base64.b64decode(key.get("google_service_account_key", "")) |
|
) |
|
project_id = key.get("google_project_id", "") |
|
region = key.get("google_region", "") |
|
|
|
scopes = ["https://www.googleapis.com/auth/cloud-platform"] |
|
self.model_name = model_name |
|
self.system = "" |
|
|
|
if "claude" in self.model_name: |
|
from anthropic import AnthropicVertex |
|
from google.auth.transport.requests import Request |
|
|
|
if access_token: |
|
credits = service_account.Credentials.from_service_account_info( |
|
access_token, scopes=scopes |
|
) |
|
request = Request() |
|
credits.refresh(request) |
|
token = credits.token |
|
self.client = AnthropicVertex( |
|
region=region, project_id=project_id, access_token=token |
|
) |
|
else: |
|
self.client = AnthropicVertex(region=region, project_id=project_id) |
|
else: |
|
from google.cloud import aiplatform |
|
import vertexai.generative_models as glm |
|
|
|
if access_token: |
|
credits = service_account.Credentials.from_service_account_info( |
|
access_token |
|
) |
|
aiplatform.init( |
|
credentials=credits, project=project_id, location=region |
|
) |
|
else: |
|
aiplatform.init(project=project_id, location=region) |
|
self.client = glm.GenerativeModel(model_name=self.model_name) |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
self.system = system |
|
|
|
if "claude" in self.model_name: |
|
if "max_tokens" not in gen_conf: |
|
gen_conf["max_tokens"] = 4096 |
|
try: |
|
response = self.client.messages.create( |
|
model=self.model_name, |
|
messages=history, |
|
system=self.system, |
|
stream=False, |
|
**gen_conf, |
|
).json() |
|
ans = response["content"][0]["text"] |
|
if response["stop_reason"] == "max_tokens": |
|
ans += ( |
|
"...\nFor the content length reason, it stopped, continue?" |
|
if is_english([ans]) |
|
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
) |
|
return ( |
|
ans, |
|
response["usage"]["input_tokens"] |
|
+ response["usage"]["output_tokens"], |
|
) |
|
except Exception as e: |
|
return "\n**ERROR**: " + str(e), 0 |
|
else: |
|
self.client._system_instruction = self.system |
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_output_tokens"] = gen_conf["max_tokens"] |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_output_tokens"]: |
|
del gen_conf[k] |
|
for item in history: |
|
if "role" in item and item["role"] == "assistant": |
|
item["role"] = "model" |
|
if "content" in item: |
|
item["parts"] = item.pop("content") |
|
try: |
|
response = self.client.generate_content( |
|
history, generation_config=gen_conf |
|
) |
|
ans = response.text |
|
return ans, response.usage_metadata.total_token_count |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
if system: |
|
self.system = system |
|
|
|
if "claude" in self.model_name: |
|
if "max_tokens" not in gen_conf: |
|
gen_conf["max_tokens"] = 4096 |
|
ans = "" |
|
total_tokens = 0 |
|
try: |
|
response = self.client.messages.create( |
|
model=self.model_name, |
|
messages=history, |
|
system=self.system, |
|
stream=True, |
|
**gen_conf, |
|
) |
|
for res in response.iter_lines(): |
|
res = res.decode("utf-8") |
|
if "content_block_delta" in res and "data" in res: |
|
text = json.loads(res[6:])["delta"]["text"] |
|
ans += text |
|
total_tokens += num_tokens_from_string(text) |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield total_tokens |
|
else: |
|
self.client._system_instruction = self.system |
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_output_tokens"] = gen_conf["max_tokens"] |
|
for k in list(gen_conf.keys()): |
|
if k not in ["temperature", "top_p", "max_output_tokens"]: |
|
del gen_conf[k] |
|
for item in history: |
|
if "role" in item and item["role"] == "assistant": |
|
item["role"] = "model" |
|
if "content" in item: |
|
item["parts"] = item.pop("content") |
|
ans = "" |
|
try: |
|
response = self.model.generate_content( |
|
history, generation_config=gen_conf, stream=True |
|
) |
|
for resp in response: |
|
ans += resp.text |
|
yield ans |
|
|
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield response._chunks[-1].usage_metadata.total_token_count |
|
|