|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import re |
|
import numpy as np |
|
import cv2 |
|
from shapely.geometry import Polygon |
|
import pyclipper |
|
|
|
|
|
def build_post_process(config, global_config=None): |
|
support_dict = ['DBPostProcess', 'CTCLabelDecode'] |
|
|
|
config = copy.deepcopy(config) |
|
module_name = config.pop('name') |
|
if module_name == "None": |
|
return |
|
if global_config is not None: |
|
config.update(global_config) |
|
assert module_name in support_dict, Exception( |
|
'post process only support {}'.format(support_dict)) |
|
module_class = eval(module_name)(**config) |
|
return module_class |
|
|
|
|
|
class DBPostProcess(object): |
|
""" |
|
The post process for Differentiable Binarization (DB). |
|
""" |
|
|
|
def __init__(self, |
|
thresh=0.3, |
|
box_thresh=0.7, |
|
max_candidates=1000, |
|
unclip_ratio=2.0, |
|
use_dilation=False, |
|
score_mode="fast", |
|
box_type='quad', |
|
**kwargs): |
|
self.thresh = thresh |
|
self.box_thresh = box_thresh |
|
self.max_candidates = max_candidates |
|
self.unclip_ratio = unclip_ratio |
|
self.min_size = 3 |
|
self.score_mode = score_mode |
|
self.box_type = box_type |
|
assert score_mode in [ |
|
"slow", "fast" |
|
], "Score mode must be in [slow, fast] but got: {}".format(score_mode) |
|
|
|
self.dilation_kernel = None if not use_dilation else np.array( |
|
[[1, 1], [1, 1]]) |
|
|
|
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height): |
|
''' |
|
_bitmap: single map with shape (1, H, W), |
|
whose values are binarized as {0, 1} |
|
''' |
|
|
|
bitmap = _bitmap |
|
height, width = bitmap.shape |
|
|
|
boxes = [] |
|
scores = [] |
|
|
|
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), |
|
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
for contour in contours[:self.max_candidates]: |
|
epsilon = 0.002 * cv2.arcLength(contour, True) |
|
approx = cv2.approxPolyDP(contour, epsilon, True) |
|
points = approx.reshape((-1, 2)) |
|
if points.shape[0] < 4: |
|
continue |
|
|
|
score = self.box_score_fast(pred, points.reshape(-1, 2)) |
|
if self.box_thresh > score: |
|
continue |
|
|
|
if points.shape[0] > 2: |
|
box = self.unclip(points, self.unclip_ratio) |
|
if len(box) > 1: |
|
continue |
|
else: |
|
continue |
|
box = box.reshape(-1, 2) |
|
|
|
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2))) |
|
if sside < self.min_size + 2: |
|
continue |
|
|
|
box = np.array(box) |
|
box[:, 0] = np.clip( |
|
np.round(box[:, 0] / width * dest_width), 0, dest_width) |
|
box[:, 1] = np.clip( |
|
np.round(box[:, 1] / height * dest_height), 0, dest_height) |
|
boxes.append(box.tolist()) |
|
scores.append(score) |
|
return boxes, scores |
|
|
|
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): |
|
''' |
|
_bitmap: single map with shape (1, H, W), |
|
whose values are binarized as {0, 1} |
|
''' |
|
|
|
bitmap = _bitmap |
|
height, width = bitmap.shape |
|
|
|
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, |
|
cv2.CHAIN_APPROX_SIMPLE) |
|
if len(outs) == 3: |
|
_img, contours, _ = outs[0], outs[1], outs[2] |
|
elif len(outs) == 2: |
|
contours, _ = outs[0], outs[1] |
|
|
|
num_contours = min(len(contours), self.max_candidates) |
|
|
|
boxes = [] |
|
scores = [] |
|
for index in range(num_contours): |
|
contour = contours[index] |
|
points, sside = self.get_mini_boxes(contour) |
|
if sside < self.min_size: |
|
continue |
|
points = np.array(points) |
|
if self.score_mode == "fast": |
|
score = self.box_score_fast(pred, points.reshape(-1, 2)) |
|
else: |
|
score = self.box_score_slow(pred, contour) |
|
if self.box_thresh > score: |
|
continue |
|
|
|
box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2) |
|
box, sside = self.get_mini_boxes(box) |
|
if sside < self.min_size + 2: |
|
continue |
|
box = np.array(box) |
|
|
|
box[:, 0] = np.clip( |
|
np.round(box[:, 0] / width * dest_width), 0, dest_width) |
|
box[:, 1] = np.clip( |
|
np.round(box[:, 1] / height * dest_height), 0, dest_height) |
|
boxes.append(box.astype("int32")) |
|
scores.append(score) |
|
return np.array(boxes, dtype="int32"), scores |
|
|
|
def unclip(self, box, unclip_ratio): |
|
poly = Polygon(box) |
|
distance = poly.area * unclip_ratio / poly.length |
|
offset = pyclipper.PyclipperOffset() |
|
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) |
|
expanded = np.array(offset.Execute(distance)) |
|
return expanded |
|
|
|
def get_mini_boxes(self, contour): |
|
bounding_box = cv2.minAreaRect(contour) |
|
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) |
|
|
|
index_1, index_2, index_3, index_4 = 0, 1, 2, 3 |
|
if points[1][1] > points[0][1]: |
|
index_1 = 0 |
|
index_4 = 1 |
|
else: |
|
index_1 = 1 |
|
index_4 = 0 |
|
if points[3][1] > points[2][1]: |
|
index_2 = 2 |
|
index_3 = 3 |
|
else: |
|
index_2 = 3 |
|
index_3 = 2 |
|
|
|
box = [ |
|
points[index_1], points[index_2], points[index_3], points[index_4] |
|
] |
|
return box, min(bounding_box[1]) |
|
|
|
def box_score_fast(self, bitmap, _box): |
|
''' |
|
box_score_fast: use bbox mean score as the mean score |
|
''' |
|
h, w = bitmap.shape[:2] |
|
box = _box.copy() |
|
xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1) |
|
xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1) |
|
ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1) |
|
ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1) |
|
|
|
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) |
|
box[:, 0] = box[:, 0] - xmin |
|
box[:, 1] = box[:, 1] - ymin |
|
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1) |
|
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] |
|
|
|
def box_score_slow(self, bitmap, contour): |
|
''' |
|
box_score_slow: use polyon mean score as the mean score |
|
''' |
|
h, w = bitmap.shape[:2] |
|
contour = contour.copy() |
|
contour = np.reshape(contour, (-1, 2)) |
|
|
|
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1) |
|
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1) |
|
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1) |
|
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1) |
|
|
|
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) |
|
|
|
contour[:, 0] = contour[:, 0] - xmin |
|
contour[:, 1] = contour[:, 1] - ymin |
|
|
|
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1) |
|
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] |
|
|
|
def __call__(self, outs_dict, shape_list): |
|
pred = outs_dict['maps'] |
|
if not isinstance(pred, np.ndarray): |
|
pred = pred.numpy() |
|
pred = pred[:, 0, :, :] |
|
segmentation = pred > self.thresh |
|
|
|
boxes_batch = [] |
|
for batch_index in range(pred.shape[0]): |
|
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index] |
|
if self.dilation_kernel is not None: |
|
mask = cv2.dilate( |
|
np.array(segmentation[batch_index]).astype(np.uint8), |
|
self.dilation_kernel) |
|
else: |
|
mask = segmentation[batch_index] |
|
if self.box_type == 'poly': |
|
boxes, scores = self.polygons_from_bitmap(pred[batch_index], |
|
mask, src_w, src_h) |
|
elif self.box_type == 'quad': |
|
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask, |
|
src_w, src_h) |
|
else: |
|
raise ValueError( |
|
"box_type can only be one of ['quad', 'poly']") |
|
|
|
boxes_batch.append({'points': boxes}) |
|
return boxes_batch |
|
|
|
|
|
class BaseRecLabelDecode(object): |
|
""" Convert between text-label and text-index """ |
|
|
|
def __init__(self, character_dict_path=None, use_space_char=False): |
|
self.beg_str = "sos" |
|
self.end_str = "eos" |
|
self.reverse = False |
|
self.character_str = [] |
|
|
|
if character_dict_path is None: |
|
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" |
|
dict_character = list(self.character_str) |
|
else: |
|
with open(character_dict_path, "rb") as fin: |
|
lines = fin.readlines() |
|
for line in lines: |
|
line = line.decode('utf-8').strip("\n").strip("\r\n") |
|
self.character_str.append(line) |
|
if use_space_char: |
|
self.character_str.append(" ") |
|
dict_character = list(self.character_str) |
|
if 'arabic' in character_dict_path: |
|
self.reverse = True |
|
|
|
dict_character = self.add_special_char(dict_character) |
|
self.dict = {} |
|
for i, char in enumerate(dict_character): |
|
self.dict[char] = i |
|
self.character = dict_character |
|
|
|
def pred_reverse(self, pred): |
|
pred_re = [] |
|
c_current = '' |
|
for c in pred: |
|
if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)): |
|
if c_current != '': |
|
pred_re.append(c_current) |
|
pred_re.append(c) |
|
c_current = '' |
|
else: |
|
c_current += c |
|
if c_current != '': |
|
pred_re.append(c_current) |
|
|
|
return ''.join(pred_re[::-1]) |
|
|
|
def add_special_char(self, dict_character): |
|
return dict_character |
|
|
|
def decode(self, text_index, text_prob=None, is_remove_duplicate=False): |
|
""" convert text-index into text-label. """ |
|
result_list = [] |
|
ignored_tokens = self.get_ignored_tokens() |
|
batch_size = len(text_index) |
|
for batch_idx in range(batch_size): |
|
selection = np.ones(len(text_index[batch_idx]), dtype=bool) |
|
if is_remove_duplicate: |
|
selection[1:] = text_index[batch_idx][1:] != text_index[ |
|
batch_idx][:-1] |
|
for ignored_token in ignored_tokens: |
|
selection &= text_index[batch_idx] != ignored_token |
|
|
|
char_list = [ |
|
self.character[text_id] |
|
for text_id in text_index[batch_idx][selection] |
|
] |
|
if text_prob is not None: |
|
conf_list = text_prob[batch_idx][selection] |
|
else: |
|
conf_list = [1] * len(selection) |
|
if len(conf_list) == 0: |
|
conf_list = [0] |
|
|
|
text = ''.join(char_list) |
|
|
|
if self.reverse: |
|
text = self.pred_reverse(text) |
|
|
|
result_list.append((text, np.mean(conf_list).tolist())) |
|
return result_list |
|
|
|
def get_ignored_tokens(self): |
|
return [0] |
|
|
|
|
|
class CTCLabelDecode(BaseRecLabelDecode): |
|
""" Convert between text-label and text-index """ |
|
|
|
def __init__(self, character_dict_path=None, use_space_char=False, |
|
**kwargs): |
|
super(CTCLabelDecode, self).__init__(character_dict_path, |
|
use_space_char) |
|
|
|
def __call__(self, preds, label=None, *args, **kwargs): |
|
if isinstance(preds, tuple) or isinstance(preds, list): |
|
preds = preds[-1] |
|
if not isinstance(preds, np.ndarray): |
|
preds = preds.numpy() |
|
preds_idx = preds.argmax(axis=2) |
|
preds_prob = preds.max(axis=2) |
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) |
|
if label is None: |
|
return text |
|
label = self.decode(label) |
|
return text, label |
|
|
|
def add_special_char(self, dict_character): |
|
dict_character = ['blank'] + dict_character |
|
return dict_character |
|
|