|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
import re
|
|
from collections import Counter
|
|
|
|
from api.db import ParserType
|
|
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
|
|
from deepdoc.parser import PdfParser, PlainParser
|
|
import numpy as np
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class Pdf(PdfParser):
|
|
def __init__(self):
|
|
self.model_speciess = ParserType.PAPER.value
|
|
super().__init__()
|
|
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
callback(msg="OCR is running...")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished.")
|
|
|
|
from timeit import default_timer as timer
|
|
start = timer()
|
|
self._layouts_rec(zoomin)
|
|
callback(0.63, "Layout analysis finished")
|
|
print("layouts:", timer() - start)
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.68, "Table analysis finished")
|
|
self._text_merge()
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
|
self._concat_downward()
|
|
self._filter_forpages()
|
|
callback(0.75, "Text merging finished.")
|
|
|
|
|
|
if column_width < self.page_images[0].size[0] / zoomin / 2:
|
|
print("two_column...................", column_width,
|
|
self.page_images[0].size[0] / zoomin / 2)
|
|
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
|
|
for b in self.boxes:
|
|
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
|
|
|
def _begin(txt):
|
|
return re.match(
|
|
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
|
|
txt.lower().strip())
|
|
|
|
if from_page > 0:
|
|
return {
|
|
"title": "",
|
|
"authors": "",
|
|
"abstract": "",
|
|
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if
|
|
re.match(r"(text|title)", b.get("layoutno", "text"))],
|
|
"tables": tbls
|
|
}
|
|
|
|
title = ""
|
|
authors = []
|
|
i = 0
|
|
while i < min(32, len(self.boxes)-1):
|
|
b = self.boxes[i]
|
|
i += 1
|
|
if b.get("layoutno", "").find("title") >= 0:
|
|
title = b["text"]
|
|
if _begin(title):
|
|
title = ""
|
|
break
|
|
for j in range(3):
|
|
if _begin(self.boxes[i + j]["text"]):
|
|
break
|
|
authors.append(self.boxes[i + j]["text"])
|
|
break
|
|
break
|
|
|
|
abstr = ""
|
|
i = 0
|
|
while i + 1 < min(32, len(self.boxes)):
|
|
b = self.boxes[i]
|
|
i += 1
|
|
txt = b["text"].lower().strip()
|
|
if re.match("(abstract|摘要)", txt):
|
|
if len(txt.split(" ")) > 32 or len(txt) > 64:
|
|
abstr = txt + self._line_tag(b, zoomin)
|
|
break
|
|
txt = self.boxes[i]["text"].lower().strip()
|
|
if len(txt.split(" ")) > 32 or len(txt) > 64:
|
|
abstr = txt + self._line_tag(self.boxes[i], zoomin)
|
|
i += 1
|
|
break
|
|
if not abstr:
|
|
i = 0
|
|
|
|
callback(
|
|
0.8, "Page {}~{}: Text merging finished".format(
|
|
from_page, min(
|
|
to_page, self.total_page)))
|
|
for b in self.boxes:
|
|
print(b["text"], b.get("layoutno"))
|
|
print(tbls)
|
|
|
|
return {
|
|
"title": title,
|
|
"authors": " ".join(authors),
|
|
"abstract": abstr,
|
|
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
|
|
re.match(r"(text|title)", b.get("layoutno", "text"))],
|
|
"tables": tbls
|
|
}
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Only pdf is supported.
|
|
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
|
|
"""
|
|
pdf_parser = None
|
|
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
if not kwargs.get("parser_config", {}).get("layout_recognize", True):
|
|
pdf_parser = PlainParser()
|
|
paper = {
|
|
"title": filename,
|
|
"authors": " ",
|
|
"abstract": "",
|
|
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0],
|
|
"tables": []
|
|
}
|
|
else:
|
|
pdf_parser = Pdf()
|
|
paper = pdf_parser(filename if not binary else binary,
|
|
from_page=from_page, to_page=to_page, callback=callback)
|
|
else:
|
|
raise NotImplementedError("file type not supported yet(pdf supported)")
|
|
|
|
doc = {"docnm_kwd": filename, "authors_tks": rag_tokenizer.tokenize(paper["authors"]),
|
|
"title_tks": rag_tokenizer.tokenize(paper["title"] if paper["title"] else filename)}
|
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
|
doc["authors_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["authors_tks"])
|
|
|
|
eng = lang.lower() == "english"
|
|
print("It's English.....", eng)
|
|
|
|
res = tokenize_table(paper["tables"], doc, eng)
|
|
|
|
if paper["abstract"]:
|
|
d = copy.deepcopy(doc)
|
|
txt = pdf_parser.remove_tag(paper["abstract"])
|
|
d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"]
|
|
d["important_tks"] = " ".join(d["important_kwd"])
|
|
d["image"], poss = pdf_parser.crop(
|
|
paper["abstract"], need_position=True)
|
|
add_positions(d, poss)
|
|
tokenize(d, txt, eng)
|
|
res.append(d)
|
|
|
|
sorted_sections = paper["sections"]
|
|
|
|
|
|
bull = bullets_category([txt for txt, _ in sorted_sections])
|
|
most_level, levels = title_frequency(bull, sorted_sections)
|
|
assert len(sorted_sections) == len(levels)
|
|
sec_ids = []
|
|
sid = 0
|
|
for i, lvl in enumerate(levels):
|
|
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
|
sid += 1
|
|
sec_ids.append(sid)
|
|
print(lvl, sorted_sections[i][0], most_level, sid)
|
|
|
|
chunks = []
|
|
last_sid = -2
|
|
for (txt, _), sec_id in zip(sorted_sections, sec_ids):
|
|
if sec_id == last_sid:
|
|
if chunks:
|
|
chunks[-1] += "\n" + txt
|
|
continue
|
|
chunks.append(txt)
|
|
last_sid = sec_id
|
|
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
|
return res
|
|
|
|
|
|
"""
|
|
readed = [0] * len(paper["lines"])
|
|
# find colon firstly
|
|
i = 0
|
|
while i + 1 < len(paper["lines"]):
|
|
txt = pdf_parser.remove_tag(paper["lines"][i][0])
|
|
j = i
|
|
if txt.strip("\n").strip()[-1] not in "::":
|
|
i += 1
|
|
continue
|
|
i += 1
|
|
while i < len(paper["lines"]) and not paper["lines"][i][0]:
|
|
i += 1
|
|
if i >= len(paper["lines"]): break
|
|
proj = [paper["lines"][i][0].strip()]
|
|
i += 1
|
|
while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]:
|
|
proj.append(paper["lines"][i])
|
|
i += 1
|
|
for k in range(j, i): readed[k] = True
|
|
txt = txt[::-1]
|
|
if eng:
|
|
r = re.search(r"(.*?) ([\\.;?!]|$)", txt)
|
|
txt = r.group(1)[::-1] if r else txt[::-1]
|
|
else:
|
|
r = re.search(r"(.*?) ([。?;!]|$)", txt)
|
|
txt = r.group(1)[::-1] if r else txt[::-1]
|
|
for p in proj:
|
|
d = copy.deepcopy(doc)
|
|
txt += "\n" + pdf_parser.remove_tag(p)
|
|
d["image"], poss = pdf_parser.crop(p, need_position=True)
|
|
add_positions(d, poss)
|
|
tokenize(d, txt, eng)
|
|
res.append(d)
|
|
|
|
i = 0
|
|
chunk = []
|
|
tk_cnt = 0
|
|
def add_chunk():
|
|
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
|
d = copy.deepcopy(doc)
|
|
ck = "\n".join(chunk)
|
|
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
|
|
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
|
add_positions(d, poss)
|
|
res.append(d)
|
|
chunk = []
|
|
tk_cnt = 0
|
|
|
|
while i < len(paper["lines"]):
|
|
if tk_cnt > 128:
|
|
add_chunk()
|
|
if readed[i]:
|
|
i += 1
|
|
continue
|
|
readed[i] = True
|
|
txt, layouts = paper["lines"][i]
|
|
txt_ = pdf_parser.remove_tag(txt)
|
|
i += 1
|
|
cnt = num_tokens_from_string(txt_)
|
|
if any([
|
|
layouts.find("title") >= 0 and chunk,
|
|
cnt + tk_cnt > 128 and tk_cnt > 32,
|
|
]):
|
|
add_chunk()
|
|
chunk = [txt]
|
|
tk_cnt = cnt
|
|
else:
|
|
chunk.append(txt)
|
|
tk_cnt += cnt
|
|
|
|
if chunk: add_chunk()
|
|
for i, d in enumerate(res):
|
|
print(d)
|
|
# d["image"].save(f"./logs/{i}.jpg")
|
|
return res
|
|
"""
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
chunk(sys.argv[1], callback=dummy)
|
|
|