|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
import re
|
|
import numpy as np
|
|
import cv2
|
|
from shapely.geometry import Polygon
|
|
import pyclipper
|
|
|
|
|
|
def build_post_process(config, global_config=None):
|
|
support_dict = ['DBPostProcess', 'CTCLabelDecode']
|
|
|
|
config = copy.deepcopy(config)
|
|
module_name = config.pop('name')
|
|
if module_name == "None":
|
|
return
|
|
if global_config is not None:
|
|
config.update(global_config)
|
|
assert module_name in support_dict, Exception(
|
|
'post process only support {}'.format(support_dict))
|
|
module_class = eval(module_name)(**config)
|
|
return module_class
|
|
|
|
|
|
class DBPostProcess(object):
|
|
"""
|
|
The post process for Differentiable Binarization (DB).
|
|
"""
|
|
|
|
def __init__(self,
|
|
thresh=0.3,
|
|
box_thresh=0.7,
|
|
max_candidates=1000,
|
|
unclip_ratio=2.0,
|
|
use_dilation=False,
|
|
score_mode="fast",
|
|
box_type='quad',
|
|
**kwargs):
|
|
self.thresh = thresh
|
|
self.box_thresh = box_thresh
|
|
self.max_candidates = max_candidates
|
|
self.unclip_ratio = unclip_ratio
|
|
self.min_size = 3
|
|
self.score_mode = score_mode
|
|
self.box_type = box_type
|
|
assert score_mode in [
|
|
"slow", "fast"
|
|
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
|
|
|
|
self.dilation_kernel = None if not use_dilation else np.array(
|
|
[[1, 1], [1, 1]])
|
|
|
|
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
|
'''
|
|
_bitmap: single map with shape (1, H, W),
|
|
whose values are binarized as {0, 1}
|
|
'''
|
|
|
|
bitmap = _bitmap
|
|
height, width = bitmap.shape
|
|
|
|
boxes = []
|
|
scores = []
|
|
|
|
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
|
|
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
for contour in contours[:self.max_candidates]:
|
|
epsilon = 0.002 * cv2.arcLength(contour, True)
|
|
approx = cv2.approxPolyDP(contour, epsilon, True)
|
|
points = approx.reshape((-1, 2))
|
|
if points.shape[0] < 4:
|
|
continue
|
|
|
|
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
|
if self.box_thresh > score:
|
|
continue
|
|
|
|
if points.shape[0] > 2:
|
|
box = self.unclip(points, self.unclip_ratio)
|
|
if len(box) > 1:
|
|
continue
|
|
else:
|
|
continue
|
|
box = box.reshape(-1, 2)
|
|
|
|
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
|
|
if sside < self.min_size + 2:
|
|
continue
|
|
|
|
box = np.array(box)
|
|
box[:, 0] = np.clip(
|
|
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
|
box[:, 1] = np.clip(
|
|
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
|
boxes.append(box.tolist())
|
|
scores.append(score)
|
|
return boxes, scores
|
|
|
|
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
|
'''
|
|
_bitmap: single map with shape (1, H, W),
|
|
whose values are binarized as {0, 1}
|
|
'''
|
|
|
|
bitmap = _bitmap
|
|
height, width = bitmap.shape
|
|
|
|
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
|
|
cv2.CHAIN_APPROX_SIMPLE)
|
|
if len(outs) == 3:
|
|
img, contours, _ = outs[0], outs[1], outs[2]
|
|
elif len(outs) == 2:
|
|
contours, _ = outs[0], outs[1]
|
|
|
|
num_contours = min(len(contours), self.max_candidates)
|
|
|
|
boxes = []
|
|
scores = []
|
|
for index in range(num_contours):
|
|
contour = contours[index]
|
|
points, sside = self.get_mini_boxes(contour)
|
|
if sside < self.min_size:
|
|
continue
|
|
points = np.array(points)
|
|
if self.score_mode == "fast":
|
|
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
|
else:
|
|
score = self.box_score_slow(pred, contour)
|
|
if self.box_thresh > score:
|
|
continue
|
|
|
|
box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
|
|
box, sside = self.get_mini_boxes(box)
|
|
if sside < self.min_size + 2:
|
|
continue
|
|
box = np.array(box)
|
|
|
|
box[:, 0] = np.clip(
|
|
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
|
box[:, 1] = np.clip(
|
|
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
|
boxes.append(box.astype("int32"))
|
|
scores.append(score)
|
|
return np.array(boxes, dtype="int32"), scores
|
|
|
|
def unclip(self, box, unclip_ratio):
|
|
poly = Polygon(box)
|
|
distance = poly.area * unclip_ratio / poly.length
|
|
offset = pyclipper.PyclipperOffset()
|
|
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
|
expanded = np.array(offset.Execute(distance))
|
|
return expanded
|
|
|
|
def get_mini_boxes(self, contour):
|
|
bounding_box = cv2.minAreaRect(contour)
|
|
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
|
|
|
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
|
|
if points[1][1] > points[0][1]:
|
|
index_1 = 0
|
|
index_4 = 1
|
|
else:
|
|
index_1 = 1
|
|
index_4 = 0
|
|
if points[3][1] > points[2][1]:
|
|
index_2 = 2
|
|
index_3 = 3
|
|
else:
|
|
index_2 = 3
|
|
index_3 = 2
|
|
|
|
box = [
|
|
points[index_1], points[index_2], points[index_3], points[index_4]
|
|
]
|
|
return box, min(bounding_box[1])
|
|
|
|
def box_score_fast(self, bitmap, _box):
|
|
'''
|
|
box_score_fast: use bbox mean score as the mean score
|
|
'''
|
|
h, w = bitmap.shape[:2]
|
|
box = _box.copy()
|
|
xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
|
|
xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
|
|
ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
|
|
ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
|
|
|
|
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
|
box[:, 0] = box[:, 0] - xmin
|
|
box[:, 1] = box[:, 1] - ymin
|
|
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
|
|
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
|
|
|
def box_score_slow(self, bitmap, contour):
|
|
'''
|
|
box_score_slow: use polyon mean score as the mean score
|
|
'''
|
|
h, w = bitmap.shape[:2]
|
|
contour = contour.copy()
|
|
contour = np.reshape(contour, (-1, 2))
|
|
|
|
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
|
|
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
|
|
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
|
|
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
|
|
|
|
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
|
|
|
contour[:, 0] = contour[:, 0] - xmin
|
|
contour[:, 1] = contour[:, 1] - ymin
|
|
|
|
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
|
|
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
|
|
|
def __call__(self, outs_dict, shape_list):
|
|
pred = outs_dict['maps']
|
|
if not isinstance(pred, np.ndarray):
|
|
pred = pred.numpy()
|
|
pred = pred[:, 0, :, :]
|
|
segmentation = pred > self.thresh
|
|
|
|
boxes_batch = []
|
|
for batch_index in range(pred.shape[0]):
|
|
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
|
|
if self.dilation_kernel is not None:
|
|
mask = cv2.dilate(
|
|
np.array(segmentation[batch_index]).astype(np.uint8),
|
|
self.dilation_kernel)
|
|
else:
|
|
mask = segmentation[batch_index]
|
|
if self.box_type == 'poly':
|
|
boxes, scores = self.polygons_from_bitmap(pred[batch_index],
|
|
mask, src_w, src_h)
|
|
elif self.box_type == 'quad':
|
|
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
|
src_w, src_h)
|
|
else:
|
|
raise ValueError(
|
|
"box_type can only be one of ['quad', 'poly']")
|
|
|
|
boxes_batch.append({'points': boxes})
|
|
return boxes_batch
|
|
|
|
|
|
class BaseRecLabelDecode(object):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self, character_dict_path=None, use_space_char=False):
|
|
self.beg_str = "sos"
|
|
self.end_str = "eos"
|
|
self.reverse = False
|
|
self.character_str = []
|
|
|
|
if character_dict_path is None:
|
|
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
|
dict_character = list(self.character_str)
|
|
else:
|
|
with open(character_dict_path, "rb") as fin:
|
|
lines = fin.readlines()
|
|
for line in lines:
|
|
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
|
self.character_str.append(line)
|
|
if use_space_char:
|
|
self.character_str.append(" ")
|
|
dict_character = list(self.character_str)
|
|
if 'arabic' in character_dict_path:
|
|
self.reverse = True
|
|
|
|
dict_character = self.add_special_char(dict_character)
|
|
self.dict = {}
|
|
for i, char in enumerate(dict_character):
|
|
self.dict[char] = i
|
|
self.character = dict_character
|
|
|
|
def pred_reverse(self, pred):
|
|
pred_re = []
|
|
c_current = ''
|
|
for c in pred:
|
|
if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
|
|
if c_current != '':
|
|
pred_re.append(c_current)
|
|
pred_re.append(c)
|
|
c_current = ''
|
|
else:
|
|
c_current += c
|
|
if c_current != '':
|
|
pred_re.append(c_current)
|
|
|
|
return ''.join(pred_re[::-1])
|
|
|
|
def add_special_char(self, dict_character):
|
|
return dict_character
|
|
|
|
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
|
""" convert text-index into text-label. """
|
|
result_list = []
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
batch_size = len(text_index)
|
|
for batch_idx in range(batch_size):
|
|
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
|
|
if is_remove_duplicate:
|
|
selection[1:] = text_index[batch_idx][1:] != text_index[
|
|
batch_idx][:-1]
|
|
for ignored_token in ignored_tokens:
|
|
selection &= text_index[batch_idx] != ignored_token
|
|
|
|
char_list = [
|
|
self.character[text_id]
|
|
for text_id in text_index[batch_idx][selection]
|
|
]
|
|
if text_prob is not None:
|
|
conf_list = text_prob[batch_idx][selection]
|
|
else:
|
|
conf_list = [1] * len(selection)
|
|
if len(conf_list) == 0:
|
|
conf_list = [0]
|
|
|
|
text = ''.join(char_list)
|
|
|
|
if self.reverse:
|
|
text = self.pred_reverse(text)
|
|
|
|
result_list.append((text, np.mean(conf_list).tolist()))
|
|
return result_list
|
|
|
|
def get_ignored_tokens(self):
|
|
return [0]
|
|
|
|
|
|
class CTCLabelDecode(BaseRecLabelDecode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self, character_dict_path=None, use_space_char=False,
|
|
**kwargs):
|
|
super(CTCLabelDecode, self).__init__(character_dict_path,
|
|
use_space_char)
|
|
|
|
def __call__(self, preds, label=None, *args, **kwargs):
|
|
if isinstance(preds, tuple) or isinstance(preds, list):
|
|
preds = preds[-1]
|
|
if not isinstance(preds, np.ndarray):
|
|
preds = preds.numpy()
|
|
preds_idx = preds.argmax(axis=2)
|
|
preds_prob = preds.max(axis=2)
|
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
|
|
if label is None:
|
|
return text
|
|
label = self.decode(label)
|
|
return text, label
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = ['blank'] + dict_character
|
|
return dict_character
|
|
|