|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import time |
|
import os |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
from api.utils.file_utils import get_project_base_directory |
|
from .operators import * |
|
import numpy as np |
|
import onnxruntime as ort |
|
|
|
from .postprocess import build_post_process |
|
|
|
|
|
def transform(data, ops=None): |
|
""" transform """ |
|
if ops is None: |
|
ops = [] |
|
for op in ops: |
|
data = op(data) |
|
if data is None: |
|
return None |
|
return data |
|
|
|
|
|
def create_operators(op_param_list, global_config=None): |
|
""" |
|
create operators based on the config |
|
|
|
Args: |
|
params(list): a dict list, used to create some operators |
|
""" |
|
assert isinstance( |
|
op_param_list, list), ('operator config should be a list') |
|
ops = [] |
|
for operator in op_param_list: |
|
assert isinstance(operator, |
|
dict) and len(operator) == 1, "yaml format error" |
|
op_name = list(operator)[0] |
|
param = {} if operator[op_name] is None else operator[op_name] |
|
if global_config is not None: |
|
param.update(global_config) |
|
op = eval(op_name)(**param) |
|
ops.append(op) |
|
return ops |
|
|
|
|
|
def load_model(model_dir, nm): |
|
model_file_path = os.path.join(model_dir, nm + ".onnx") |
|
if not os.path.exists(model_file_path): |
|
raise ValueError("not find model file path {}".format( |
|
model_file_path)) |
|
|
|
options = ort.SessionOptions() |
|
options.enable_cpu_mem_arena = False |
|
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL |
|
options.intra_op_num_threads = 2 |
|
options.inter_op_num_threads = 2 |
|
if False and ort.get_device() == "GPU": |
|
sess = ort.InferenceSession( |
|
model_file_path, |
|
options=options, |
|
providers=['CUDAExecutionProvider']) |
|
else: |
|
sess = ort.InferenceSession( |
|
model_file_path, |
|
options=options, |
|
providers=['CPUExecutionProvider']) |
|
return sess, sess.get_inputs()[0] |
|
|
|
|
|
class TextRecognizer(object): |
|
def __init__(self, model_dir): |
|
self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")] |
|
self.rec_batch_num = 16 |
|
postprocess_params = { |
|
'name': 'CTCLabelDecode', |
|
"character_dict_path": os.path.join(model_dir, "ocr.res"), |
|
"use_space_char": True |
|
} |
|
self.postprocess_op = build_post_process(postprocess_params) |
|
self.predictor, self.input_tensor = load_model(model_dir, 'rec') |
|
|
|
def resize_norm_img(self, img, max_wh_ratio): |
|
imgC, imgH, imgW = self.rec_image_shape |
|
|
|
assert imgC == img.shape[2] |
|
imgW = int((imgH * max_wh_ratio)) |
|
w = self.input_tensor.shape[3:][0] |
|
if isinstance(w, str): |
|
pass |
|
elif w is not None and w > 0: |
|
imgW = w |
|
h, w = img.shape[:2] |
|
ratio = w / float(h) |
|
if math.ceil(imgH * ratio) > imgW: |
|
resized_w = imgW |
|
else: |
|
resized_w = int(math.ceil(imgH * ratio)) |
|
|
|
resized_image = cv2.resize(img, (resized_w, imgH)) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) |
|
padding_im[:, :, 0:resized_w] = resized_image |
|
return padding_im |
|
|
|
def resize_norm_img_vl(self, img, image_shape): |
|
|
|
imgC, imgH, imgW = image_shape |
|
img = img[:, :, ::-1] |
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
return resized_image |
|
|
|
def resize_norm_img_srn(self, img, image_shape): |
|
imgC, imgH, imgW = image_shape |
|
|
|
img_black = np.zeros((imgH, imgW)) |
|
im_hei = img.shape[0] |
|
im_wid = img.shape[1] |
|
|
|
if im_wid <= im_hei * 1: |
|
img_new = cv2.resize(img, (imgH * 1, imgH)) |
|
elif im_wid <= im_hei * 2: |
|
img_new = cv2.resize(img, (imgH * 2, imgH)) |
|
elif im_wid <= im_hei * 3: |
|
img_new = cv2.resize(img, (imgH * 3, imgH)) |
|
else: |
|
img_new = cv2.resize(img, (imgW, imgH)) |
|
|
|
img_np = np.asarray(img_new) |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) |
|
img_black[:, 0:img_np.shape[1]] = img_np |
|
img_black = img_black[:, :, np.newaxis] |
|
|
|
row, col, c = img_black.shape |
|
c = 1 |
|
|
|
return np.reshape(img_black, (c, row, col)).astype(np.float32) |
|
|
|
def srn_other_inputs(self, image_shape, num_heads, max_text_length): |
|
|
|
imgC, imgH, imgW = image_shape |
|
feature_dim = int((imgH / 8) * (imgW / 8)) |
|
|
|
encoder_word_pos = np.array(range(0, feature_dim)).reshape( |
|
(feature_dim, 1)).astype('int64') |
|
gsrm_word_pos = np.array(range(0, max_text_length)).reshape( |
|
(max_text_length, 1)).astype('int64') |
|
|
|
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) |
|
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( |
|
[-1, 1, max_text_length, max_text_length]) |
|
gsrm_slf_attn_bias1 = np.tile( |
|
gsrm_slf_attn_bias1, |
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9] |
|
|
|
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( |
|
[-1, 1, max_text_length, max_text_length]) |
|
gsrm_slf_attn_bias2 = np.tile( |
|
gsrm_slf_attn_bias2, |
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9] |
|
|
|
encoder_word_pos = encoder_word_pos[np.newaxis, :] |
|
gsrm_word_pos = gsrm_word_pos[np.newaxis, :] |
|
|
|
return [ |
|
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, |
|
gsrm_slf_attn_bias2 |
|
] |
|
|
|
def process_image_srn(self, img, image_shape, num_heads, max_text_length): |
|
norm_img = self.resize_norm_img_srn(img, image_shape) |
|
norm_img = norm_img[np.newaxis, :] |
|
|
|
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ |
|
self.srn_other_inputs(image_shape, num_heads, max_text_length) |
|
|
|
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) |
|
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) |
|
encoder_word_pos = encoder_word_pos.astype(np.int64) |
|
gsrm_word_pos = gsrm_word_pos.astype(np.int64) |
|
|
|
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, |
|
gsrm_slf_attn_bias2) |
|
|
|
def resize_norm_img_sar(self, img, image_shape, |
|
width_downsample_ratio=0.25): |
|
imgC, imgH, imgW_min, imgW_max = image_shape |
|
h = img.shape[0] |
|
w = img.shape[1] |
|
valid_ratio = 1.0 |
|
|
|
width_divisor = int(1 / width_downsample_ratio) |
|
|
|
ratio = w / float(h) |
|
resize_w = math.ceil(imgH * ratio) |
|
if resize_w % width_divisor != 0: |
|
resize_w = round(resize_w / width_divisor) * width_divisor |
|
if imgW_min is not None: |
|
resize_w = max(imgW_min, resize_w) |
|
if imgW_max is not None: |
|
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) |
|
resize_w = min(imgW_max, resize_w) |
|
resized_image = cv2.resize(img, (resize_w, imgH)) |
|
resized_image = resized_image.astype('float32') |
|
|
|
if image_shape[0] == 1: |
|
resized_image = resized_image / 255 |
|
resized_image = resized_image[np.newaxis, :] |
|
else: |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
resize_shape = resized_image.shape |
|
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) |
|
padding_im[:, :, 0:resize_w] = resized_image |
|
pad_shape = padding_im.shape |
|
|
|
return padding_im, resize_shape, pad_shape, valid_ratio |
|
|
|
def resize_norm_img_spin(self, img): |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
|
|
img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC) |
|
img = np.array(img, np.float32) |
|
img = np.expand_dims(img, -1) |
|
img = img.transpose((2, 0, 1)) |
|
mean = [127.5] |
|
std = [127.5] |
|
mean = np.array(mean, dtype=np.float32) |
|
std = np.array(std, dtype=np.float32) |
|
mean = np.float32(mean.reshape(1, -1)) |
|
stdinv = 1 / np.float32(std.reshape(1, -1)) |
|
img -= mean |
|
img *= stdinv |
|
return img |
|
|
|
def resize_norm_img_svtr(self, img, image_shape): |
|
|
|
imgC, imgH, imgW = image_shape |
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
return resized_image |
|
|
|
def resize_norm_img_abinet(self, img, image_shape): |
|
|
|
imgC, imgH, imgW = image_shape |
|
|
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image / 255. |
|
|
|
mean = np.array([0.485, 0.456, 0.406]) |
|
std = np.array([0.229, 0.224, 0.225]) |
|
resized_image = ( |
|
resized_image - mean[None, None, ...]) / std[None, None, ...] |
|
resized_image = resized_image.transpose((2, 0, 1)) |
|
resized_image = resized_image.astype('float32') |
|
|
|
return resized_image |
|
|
|
def norm_img_can(self, img, image_shape): |
|
|
|
img = cv2.cvtColor( |
|
img, cv2.COLOR_BGR2GRAY) |
|
|
|
if self.rec_image_shape[0] == 1: |
|
h, w = img.shape |
|
_, imgH, imgW = self.rec_image_shape |
|
if h < imgH or w < imgW: |
|
padding_h = max(imgH - h, 0) |
|
padding_w = max(imgW - w, 0) |
|
img_padded = np.pad(img, ((0, padding_h), (0, padding_w)), |
|
'constant', |
|
constant_values=(255)) |
|
img = img_padded |
|
|
|
img = np.expand_dims(img, 0) / 255.0 |
|
img = img.astype('float32') |
|
|
|
return img |
|
|
|
def __call__(self, img_list): |
|
img_num = len(img_list) |
|
|
|
width_list = [] |
|
for img in img_list: |
|
width_list.append(img.shape[1] / float(img.shape[0])) |
|
|
|
indices = np.argsort(np.array(width_list)) |
|
rec_res = [['', 0.0]] * img_num |
|
batch_num = self.rec_batch_num |
|
st = time.time() |
|
|
|
for beg_img_no in range(0, img_num, batch_num): |
|
end_img_no = min(img_num, beg_img_no + batch_num) |
|
norm_img_batch = [] |
|
imgC, imgH, imgW = self.rec_image_shape[:3] |
|
max_wh_ratio = imgW / imgH |
|
|
|
for ino in range(beg_img_no, end_img_no): |
|
h, w = img_list[indices[ino]].shape[0:2] |
|
wh_ratio = w * 1.0 / h |
|
max_wh_ratio = max(max_wh_ratio, wh_ratio) |
|
for ino in range(beg_img_no, end_img_no): |
|
norm_img = self.resize_norm_img(img_list[indices[ino]], |
|
max_wh_ratio) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
norm_img_batch = np.concatenate(norm_img_batch) |
|
norm_img_batch = norm_img_batch.copy() |
|
|
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = norm_img_batch |
|
for i in range(100000): |
|
try: |
|
outputs = self.predictor.run(None, input_dict) |
|
break |
|
except Exception as e: |
|
if i >= 3: |
|
raise e |
|
time.sleep(5) |
|
preds = outputs[0] |
|
rec_result = self.postprocess_op(preds) |
|
for rno in range(len(rec_result)): |
|
rec_res[indices[beg_img_no + rno]] = rec_result[rno] |
|
|
|
return rec_res, time.time() - st |
|
|
|
|
|
class TextDetector(object): |
|
def __init__(self, model_dir): |
|
pre_process_list = [{ |
|
'DetResizeForTest': { |
|
'limit_side_len': 960, |
|
'limit_type': "max", |
|
} |
|
}, { |
|
'NormalizeImage': { |
|
'std': [0.229, 0.224, 0.225], |
|
'mean': [0.485, 0.456, 0.406], |
|
'scale': '1./255.', |
|
'order': 'hwc' |
|
} |
|
}, { |
|
'ToCHWImage': None |
|
}, { |
|
'KeepKeys': { |
|
'keep_keys': ['image', 'shape'] |
|
} |
|
}] |
|
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, |
|
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"} |
|
|
|
self.postprocess_op = build_post_process(postprocess_params) |
|
self.predictor, self.input_tensor = load_model(model_dir, 'det') |
|
|
|
img_h, img_w = self.input_tensor.shape[2:] |
|
if isinstance(img_h, str) or isinstance(img_w, str): |
|
pass |
|
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0: |
|
pre_process_list[0] = { |
|
'DetResizeForTest': { |
|
'image_shape': [img_h, img_w] |
|
} |
|
} |
|
self.preprocess_op = create_operators(pre_process_list) |
|
|
|
def order_points_clockwise(self, pts): |
|
rect = np.zeros((4, 2), dtype="float32") |
|
s = pts.sum(axis=1) |
|
rect[0] = pts[np.argmin(s)] |
|
rect[2] = pts[np.argmax(s)] |
|
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) |
|
diff = np.diff(np.array(tmp), axis=1) |
|
rect[1] = tmp[np.argmin(diff)] |
|
rect[3] = tmp[np.argmax(diff)] |
|
return rect |
|
|
|
def clip_det_res(self, points, img_height, img_width): |
|
for pno in range(points.shape[0]): |
|
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) |
|
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) |
|
return points |
|
|
|
def filter_tag_det_res(self, dt_boxes, image_shape): |
|
img_height, img_width = image_shape[0:2] |
|
dt_boxes_new = [] |
|
for box in dt_boxes: |
|
if isinstance(box, list): |
|
box = np.array(box) |
|
box = self.order_points_clockwise(box) |
|
box = self.clip_det_res(box, img_height, img_width) |
|
rect_width = int(np.linalg.norm(box[0] - box[1])) |
|
rect_height = int(np.linalg.norm(box[0] - box[3])) |
|
if rect_width <= 3 or rect_height <= 3: |
|
continue |
|
dt_boxes_new.append(box) |
|
dt_boxes = np.array(dt_boxes_new) |
|
return dt_boxes |
|
|
|
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): |
|
img_height, img_width = image_shape[0:2] |
|
dt_boxes_new = [] |
|
for box in dt_boxes: |
|
if isinstance(box, list): |
|
box = np.array(box) |
|
box = self.clip_det_res(box, img_height, img_width) |
|
dt_boxes_new.append(box) |
|
dt_boxes = np.array(dt_boxes_new) |
|
return dt_boxes |
|
|
|
def __call__(self, img): |
|
ori_im = img.copy() |
|
data = {'image': img} |
|
|
|
st = time.time() |
|
data = transform(data, self.preprocess_op) |
|
img, shape_list = data |
|
if img is None: |
|
return None, 0 |
|
img = np.expand_dims(img, axis=0) |
|
shape_list = np.expand_dims(shape_list, axis=0) |
|
img = img.copy() |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = img |
|
for i in range(100000): |
|
try: |
|
outputs = self.predictor.run(None, input_dict) |
|
break |
|
except Exception as e: |
|
if i >= 3: |
|
raise e |
|
time.sleep(5) |
|
|
|
post_result = self.postprocess_op({"maps": outputs[0]}, shape_list) |
|
dt_boxes = post_result[0]['points'] |
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape) |
|
|
|
return dt_boxes, time.time() - st |
|
|
|
|
|
class OCR(object): |
|
def __init__(self, model_dir=None): |
|
""" |
|
If you have trouble downloading HuggingFace models, -_^ this might help!! |
|
|
|
For Linux: |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
|
For Windows: |
|
Good luck |
|
^_- |
|
|
|
""" |
|
if not model_dir: |
|
try: |
|
model_dir = os.path.join( |
|
get_project_base_directory(), |
|
"rag/res/deepdoc") |
|
self.text_detector = TextDetector(model_dir) |
|
self.text_recognizer = TextRecognizer(model_dir) |
|
except Exception as e: |
|
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc", |
|
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), |
|
local_dir_use_symlinks=False) |
|
self.text_detector = TextDetector(model_dir) |
|
self.text_recognizer = TextRecognizer(model_dir) |
|
|
|
self.drop_score = 0.5 |
|
self.crop_image_res_index = 0 |
|
|
|
def get_rotate_crop_image(self, img, points): |
|
''' |
|
img_height, img_width = img.shape[0:2] |
|
left = int(np.min(points[:, 0])) |
|
right = int(np.max(points[:, 0])) |
|
top = int(np.min(points[:, 1])) |
|
bottom = int(np.max(points[:, 1])) |
|
img_crop = img[top:bottom, left:right, :].copy() |
|
points[:, 0] = points[:, 0] - left |
|
points[:, 1] = points[:, 1] - top |
|
''' |
|
assert len(points) == 4, "shape of points must be 4*2" |
|
img_crop_width = int( |
|
max( |
|
np.linalg.norm(points[0] - points[1]), |
|
np.linalg.norm(points[2] - points[3]))) |
|
img_crop_height = int( |
|
max( |
|
np.linalg.norm(points[0] - points[3]), |
|
np.linalg.norm(points[1] - points[2]))) |
|
pts_std = np.float32([[0, 0], [img_crop_width, 0], |
|
[img_crop_width, img_crop_height], |
|
[0, img_crop_height]]) |
|
M = cv2.getPerspectiveTransform(points, pts_std) |
|
dst_img = cv2.warpPerspective( |
|
img, |
|
M, (img_crop_width, img_crop_height), |
|
borderMode=cv2.BORDER_REPLICATE, |
|
flags=cv2.INTER_CUBIC) |
|
dst_img_height, dst_img_width = dst_img.shape[0:2] |
|
if dst_img_height * 1.0 / dst_img_width >= 1.5: |
|
dst_img = np.rot90(dst_img) |
|
return dst_img |
|
|
|
def sorted_boxes(self, dt_boxes): |
|
""" |
|
Sort text boxes in order from top to bottom, left to right |
|
args: |
|
dt_boxes(array):detected text boxes with shape [4, 2] |
|
return: |
|
sorted boxes(array) with shape [4, 2] |
|
""" |
|
num_boxes = dt_boxes.shape[0] |
|
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) |
|
_boxes = list(sorted_boxes) |
|
|
|
for i in range(num_boxes - 1): |
|
for j in range(i, -1, -1): |
|
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ |
|
(_boxes[j + 1][0][0] < _boxes[j][0][0]): |
|
tmp = _boxes[j] |
|
_boxes[j] = _boxes[j + 1] |
|
_boxes[j + 1] = tmp |
|
else: |
|
break |
|
return _boxes |
|
|
|
def detect(self, img): |
|
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} |
|
|
|
if img is None: |
|
return None, None, time_dict |
|
|
|
start = time.time() |
|
dt_boxes, elapse = self.text_detector(img) |
|
time_dict['det'] = elapse |
|
|
|
if dt_boxes is None: |
|
end = time.time() |
|
time_dict['all'] = end - start |
|
return None, None, time_dict |
|
|
|
return zip(self.sorted_boxes(dt_boxes), [ |
|
("", 0) for _ in range(len(dt_boxes))]) |
|
|
|
def recognize(self, ori_im, box): |
|
img_crop = self.get_rotate_crop_image(ori_im, box) |
|
|
|
rec_res, elapse = self.text_recognizer([img_crop]) |
|
text, score = rec_res[0] |
|
if score < self.drop_score: |
|
return "" |
|
return text |
|
|
|
def __call__(self, img, cls=True): |
|
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} |
|
|
|
if img is None: |
|
return None, None, time_dict |
|
|
|
start = time.time() |
|
ori_im = img.copy() |
|
dt_boxes, elapse = self.text_detector(img) |
|
time_dict['det'] = elapse |
|
|
|
if dt_boxes is None: |
|
end = time.time() |
|
time_dict['all'] = end - start |
|
return None, None, time_dict |
|
|
|
img_crop_list = [] |
|
|
|
dt_boxes = self.sorted_boxes(dt_boxes) |
|
|
|
for bno in range(len(dt_boxes)): |
|
tmp_box = copy.deepcopy(dt_boxes[bno]) |
|
img_crop = self.get_rotate_crop_image(ori_im, tmp_box) |
|
img_crop_list.append(img_crop) |
|
|
|
rec_res, elapse = self.text_recognizer(img_crop_list) |
|
|
|
time_dict['rec'] = elapse |
|
|
|
filter_boxes, filter_rec_res = [], [] |
|
for box, rec_result in zip(dt_boxes, rec_res): |
|
text, score = rec_result |
|
if score >= self.drop_score: |
|
filter_boxes.append(box) |
|
filter_rec_res.append(rec_result) |
|
end = time.time() |
|
time_dict['all'] = end - start |
|
|
|
|
|
|
|
|
|
return list(zip([a.tolist() for a in filter_boxes], filter_rec_res)) |
|
|