ragflow / api /db /services /dialog_service.py
Kevin Hu
Support iframe chatbot. (#3961)
1b1a5b7
raw
history blame
26.4 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import binascii
import os
import json
import re
from collections import defaultdict
from copy import deepcopy
from timeit import default_timer as timer
import datetime
from datetime import timedelta
from api.db import LLMType, ParserType,StatusEnum
from api.db.db_models import Dialog, DB
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api import settings
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
from api.utils.file_utils import get_project_base_directory
class DialogService(CommonService):
model = Dialog
@classmethod
@DB.connection_context()
def get_list(cls, tenant_id,
page_number, items_per_page, orderby, desc, id , name):
chats = cls.model.select()
if id:
chats = chats.where(cls.model.id == id)
if name:
chats = chats.where(cls.model.name == name)
chats = chats.where(
(cls.model.tenant_id == tenant_id)
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
chats = chats.order_by(cls.model.getter_by(orderby).desc())
else:
chats = chats.order_by(cls.model.getter_by(orderby).asc())
chats = chats.paginate(page_number, items_per_page)
return list(chats.dicts())
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append(
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
if len(msg) > 1:
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0]["content"])
ll2 = num_tokens_from_string(msg_[-1]["content"])
if ll / (ll + ll2) > 0.8:
m = msg_[0]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[0]["content"] = m
return max_length, msg
m = msg_[1]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[1]["content"] = m
return max_length, msg
def llm_id2llm_type(llm_id):
llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
fnm = os.path.join(get_project_base_directory(), "conf")
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
for llm_factory in llm_factories["factory_llm_infos"]:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].strip(",")[-1]
def kb_prompt(kbinfos, max_tokens):
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
used_token_count = 0
chunks_num = 0
for i, c in enumerate(knowledges):
used_token_count += num_tokens_from_string(c)
chunks_num += 1
if max_tokens * 0.97 < used_token_count:
knowledges = knowledges[:i]
break
doc2chunks = defaultdict(list)
for i, ck in enumerate(kbinfos["chunks"]):
if i >= chunks_num:
break
doc2chunks["docnm_kwd"].append(ck["content_with_weight"])
knowledges = []
for nm, chunks in doc2chunks.items():
txt = f"Document: {nm} \nContains the following relevant fragments:\n"
for i, chunk in enumerate(chunks, 1):
txt += f"{i}. {chunk}\n"
knowledges.append(txt)
return knowledges
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
st = timer()
llm_id, fid = TenantLLMService.split_model_name_and_factory(dialog.llm_id)
llm = LLMService.query(llm_name=llm_id) if not fid else LLMService.query(llm_name=llm_id, fid=fid)
if not llm:
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not fid else \
TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=fid)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 8192
else:
max_tokens = llm[0].max_tokens
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
retr = settings.retrievaler if not is_kg else settings.kg_retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
for m in messages[:-1]:
if "doc_ids" in m:
attachments.extend(m["doc_ids"])
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
if not embd_mdl:
raise LookupError("Embedding model(%s) not found" % embd_nms[0])
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
# try to use sql if field mapping is good to go
if field_map:
logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
if ans:
yield ans
return
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":
continue
if p["key"] not in kwargs and not p["optional"]:
raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
if len(questions) > 1 and prompt_config.get("refine_multiturn"):
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
else:
questions = questions[-1:]
refineQ_tm = timer()
keyword_tm = timer()
rerank_mdl = None
if dialog.rerank_id:
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
for _ in range(len(questions) // 2):
questions.append(questions[-1])
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
keyword_tm = timer()
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_tm = timer()
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n\n------\n\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
prompt = msg[0]["content"]
prompt += "\n\n### Query:\n%s" % " ".join(questions)
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
max_tokens - used_token_count)
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_tm
refs = []
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retr.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
refs = deepcopy(kbinfos)
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
done_tm = timer()
prompt += "\n\n### Elapsed\n - Refine Question: %.1f ms\n - Keywords: %.1f ms\n - Retrieval: %.1f ms\n - LLM: %.1f ms" % (
(refineQ_tm - st) * 1000, (keyword_tm - refineQ_tm) * 1000, (retrieval_tm - keyword_tm) * 1000,
(done_tm - retrieval_tm) * 1000)
return {"answer": answer, "reference": refs, "prompt": prompt}
if stream:
last_ans = ""
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
answer = ans
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans):]
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(answer)
else:
answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
logging.debug("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
res = decorate_answer(answer)
res["audio_binary"] = tts(tts_mdl, answer)
yield res
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
user_promt = """
表名:{};
数据库表字段说明如下:
{}
问题如下:
{}
请写出SQL, 且只要SQL,不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
tried_times = 0
def get_table():
nonlocal sys_prompt, user_promt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
"temperature": 0.06})
logging.debug(f"{question} ==> {user_promt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
return None, None
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
if sql[:len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
for k in field_map.keys():
if k in forbidden_select_fields4resume:
continue
if len(flds) > 11:
break
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
logging.debug(f"{question} get SQL(refined): {sql}")
tried_times += 1
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table()
if tbl is None:
return None
if tbl.get("error") and tried_times <= 2:
user_promt = """
表名:{};
数据库表字段说明如下:
{}
问题如下:
{}
你上一次给出的错误SQL如下:
{}
后台报错如下:
{}
请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question, sql, tbl["error"]
)
tbl, sql = get_table()
logging.debug("TRY it again: {}".format(sql))
logging.debug("GET table: {}".format(tbl))
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
docid_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "doc_id"])
docnm_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "docnm_kwd"])
clmn_idx = [ii for ii in range(
len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
# compose markdown table
clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in
clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not docnm_idx:
logging.warning("SQL missing field: " + sql)
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [], "doc_aggs": []},
"prompt": sys_prompt
}
docid_idx = list(docid_idx)[0]
docnm_idx = list(docnm_idx)[0]
doc_aggs = {}
for r in tbl["rows"]:
if r[docid_idx] not in doc_aggs:
doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
doc_aggs[r[docid_idx]]["count"] += 1
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
doc_aggs.items()]},
"prompt": sys_prompt
}
def relevant(tenant_id, llm_id, question, contents: list):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
if not contents:
return False
contents = "Documents: \n" + " - ".join(contents)
contents = f"Question: {question}\n" + contents
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
if ans.lower().find("yes") >= 0:
return True
return False
def rewrite(tenant_id, llm_id, question):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
changing the way of expression, translating the original question into another language (English/Chinese), etc.
And return 5 versions of question and one is from translation.
Just list the question. No other words are needed.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
return ans
def keyword_extraction(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: extract the most important keywords/phrases of a given piece of text content.
Requirements:
- Summarize the text content, and give top {topn} important keywords/phrases.
- The keywords MUST be in language of the given piece of text content.
- The keywords are delimited by ENGLISH COMMA.
- Keywords ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >=0:
return ""
return kwd
def question_proposal(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: propose {topn} questions about a given piece of text content.
Requirements:
- Understand and summarize the text content, and propose top {topn} important questions.
- The questions SHOULD NOT have overlapping meanings.
- The questions SHOULD cover the main content of the text as much as possible.
- The questions MUST be in language of the given piece of text content.
- One question per line.
- Question ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def full_question(tenant_id, llm_id, messages):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
conv = []
for m in messages:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
today = datetime.date.today().isoformat()
yesterday = (datetime.date.today() - timedelta(days=1)).isoformat()
tomorrow = (datetime.date.today() + timedelta(days=1)).isoformat()
prompt = f"""
Role: A helpful assistant
Task and steps:
1. Generate a full user question that would follow the conversation.
2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
Requirements & Restrictions:
- Text generated MUST be in the same language of the original user's question.
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question.
######################
-Examples-
######################
# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?
------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
------------
# Example 3
## Conversation
USER: What's the weather today in London?
ASSISTANT: Cloudy.
USER: What's about tomorrow in Rochester?
###############
Output: What's the weather in Rochester on {tomorrow}?
######################
# Real Data
## Conversation
{conv}
###############
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
def tts(tts_mdl, text):
if not tts_mdl or not text:
return
bin = b""
for chunk in tts_mdl.tts(text):
bin += chunk
return binascii.hexlify(bin).decode("utf-8")
def ask(question, kb_ids, tenant_id):
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
retr = settings.retrievaler if not is_kg else settings.kg_retrievaler
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_nms[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
max_tokens = chat_mdl.max_length
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
knowledges = kb_prompt(kbinfos, max_tokens)
prompt = """
Role: You're a smart assistant. Your name is Miss R.
Task: Summarize the information from knowledge bases and answer user's question.
Requirements and restriction:
- DO NOT make things up, especially for numbers.
- If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
- Answer with markdown format text.
- Answer in language of user's question.
- DO NOT make things up, especially for numbers.
### Information from knowledge bases
%s
The above is information from knowledge bases.
""" % "\n".join(knowledges)
msg = [{"role": "user", "content": question}]
def decorate_answer(answer):
nonlocal knowledges, kbinfos, prompt
answer, idx = retr.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=0.7,
vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
refs = deepcopy(kbinfos)
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": refs}
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)