ragflow / rag /svr /task_executor.py
zhichyu's picture
Fix graphrag + infinity bugs (#3681)
bcf5fd5
raw
history blame
20.6 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# from beartype import BeartypeConf
# from beartype.claw import beartype_all # <-- you didn't sign up for this
# beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
import logging
import sys
from api.utils.log_utils import initRootLogger
CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
CONSUMER_NAME = "task_executor_" + CONSUMER_NO
initRootLogger(CONSUMER_NAME)
for module in ["pdfminer"]:
module_logger = logging.getLogger(module)
module_logger.setLevel(logging.WARNING)
for module in ["peewee"]:
module_logger = logging.getLogger(module)
module_logger.handlers.clear()
module_logger.propagate = True
from datetime import datetime
import json
import os
import hashlib
import copy
import re
import sys
import time
import threading
from functools import partial
from io import BytesIO
from multiprocessing.context import TimeoutError
from timeit import default_timer as timer
import tracemalloc
import numpy as np
from api.db import LLMType, ParserType
from api.db.services.dialog_service import keyword_extraction, question_proposal
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
from api.db.services.task_service import TaskService
from api.db.services.file2document_service import File2DocumentService
from api import settings
from api.db.db_models import close_connection
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
knowledge_graph, email
from rag.nlp import search, rag_tokenizer
from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME
from rag.utils import rmSpace, num_tokens_from_string
from rag.utils.redis_conn import REDIS_CONN, Payload
from rag.utils.storage_factory import STORAGE_IMPL
BATCH_SIZE = 64
FACTORY = {
"general": naive,
ParserType.NAIVE.value: naive,
ParserType.PAPER.value: paper,
ParserType.BOOK.value: book,
ParserType.PRESENTATION.value: presentation,
ParserType.MANUAL.value: manual,
ParserType.LAWS.value: laws,
ParserType.QA.value: qa,
ParserType.TABLE.value: table,
ParserType.RESUME.value: resume,
ParserType.PICTURE.value: picture,
ParserType.ONE.value: one,
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email,
ParserType.KG.value: knowledge_graph
}
CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
PAYLOAD: Payload | None = None
BOOT_AT = datetime.now().isoformat()
PENDING_TASKS = 0
LAG_TASKS = 0
mt_lock = threading.Lock()
DONE_TASKS = 0
FAILED_TASKS = 0
CURRENT_TASK = None
def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
global PAYLOAD
if prog is not None and prog < 0:
msg = "[ERROR]" + msg
cancel = TaskService.do_cancel(task_id)
if cancel:
msg += " [Canceled]"
prog = -1
if to_page > 0:
if msg:
msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
d = {"progress_msg": msg}
if prog is not None:
d["progress"] = prog
try:
logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}")
TaskService.update_progress(task_id, d)
except Exception:
logging.exception(f"set_progress({task_id}) got exception")
close_connection()
if cancel:
if PAYLOAD:
PAYLOAD.ack()
PAYLOAD = None
os._exit(0)
def collect():
global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS
try:
PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
if not PAYLOAD:
PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
if not PAYLOAD:
time.sleep(1)
return None
except Exception:
logging.exception("Get task event from queue exception")
return None
msg = PAYLOAD.get_message()
if not msg:
return None
if TaskService.do_cancel(msg["id"]):
with mt_lock:
DONE_TASKS += 1
logging.info("Task {} has been canceled.".format(msg["id"]))
return None
task = TaskService.get_task(msg["id"])
if not task:
with mt_lock:
DONE_TASKS += 1
logging.warning("{} empty task!".format(msg["id"]))
return None
if msg.get("type", "") == "raptor":
task["task_type"] = "raptor"
return task
def get_storage_binary(bucket, name):
return STORAGE_IMPL.get(bucket, name)
def build(row):
if row["size"] > DOC_MAXIMUM_SIZE:
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
callback = partial(
set_progress,
row["id"],
row["from_page"],
row["to_page"])
chunker = FACTORY[row["parser_id"].lower()]
try:
st = timer()
bucket, name = File2DocumentService.get_storage_address(doc_id=row["doc_id"])
binary = get_storage_binary(bucket, name)
logging.info(
"From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
except TimeoutError:
callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
logging.exception(
"Minio {}/{} got timeout: Fetch file from minio timeout.".format(row["location"], row["name"]))
raise
except Exception as e:
if re.search("(No such file|not found)", str(e)):
callback(-1, "Can not find file <%s> from minio. Could you try it again?" % row["name"])
else:
callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
raise
try:
cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
to_page=row["to_page"], lang=row["language"], callback=callback,
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
logging.info("Chunking({}) {}/{} done".format(timer() - st, row["location"], row["name"]))
except Exception as e:
callback(-1, "Internal server error while chunking: %s" %
str(e).replace("'", ""))
logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
raise
docs = []
doc = {
"doc_id": row["doc_id"],
"kb_id": str(row["kb_id"])
}
el = 0
for ck in cks:
d = copy.deepcopy(doc)
d.update(ck)
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
d["id"] = md5.hexdigest()
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.now().timestamp()
if not d.get("image"):
_ = d.pop("image", None)
d["img_id"] = ""
d["page_num_list"] = json.dumps([])
d["position_list"] = json.dumps([])
d["top_list"] = json.dumps([])
docs.append(d)
continue
try:
output_buffer = BytesIO()
if isinstance(d["image"], bytes):
output_buffer = BytesIO(d["image"])
else:
d["image"].save(output_buffer, format='JPEG')
st = timer()
STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
el += timer() - st
except Exception:
logging.exception(
"Saving image of chunk {}/{}/{} got exception".format(row["location"], row["name"], d["_id"]))
raise
d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
del d["image"]
docs.append(d)
logging.info("MINIO PUT({}):{}".format(row["name"], el))
if row["parser_config"].get("auto_keywords", 0):
st = timer()
callback(msg="Start to generate keywords for every chunk ...")
chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
for d in docs:
d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
row["parser_config"]["auto_keywords"]).split(",")
d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st))
if row["parser_config"].get("auto_questions", 0):
st = timer()
callback(msg="Start to generate questions for every chunk ...")
chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
for d in docs:
qst = question_proposal(chat_mdl, d["content_with_weight"], row["parser_config"]["auto_questions"])
d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
qst = rag_tokenizer.tokenize(qst)
if "content_ltks" in d:
d["content_ltks"] += " " + qst
if "content_sm_ltks" in d:
d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
callback(msg="Question generation completed in {:.2f}s".format(timer() - st))
return docs
def init_kb(row, vector_size: int):
idxnm = search.index_name(row["tenant_id"])
return settings.docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
def embedding(docs, mdl, parser_config=None, callback=None):
if parser_config is None:
parser_config = {}
batch_size = 32
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
tk_count = 0
if len(tts) == len(cnts):
tts_ = np.array([])
for i in range(0, len(tts), batch_size):
vts, c = mdl.encode(tts[i: i + batch_size])
if len(tts_) == 0:
tts_ = vts
else:
tts_ = np.concatenate((tts_, vts), axis=0)
tk_count += c
callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
tts = tts_
cnts_ = np.array([])
for i in range(0, len(cnts), batch_size):
vts, c = mdl.encode(cnts[i: i + batch_size])
if len(cnts_) == 0:
cnts_ = vts
else:
cnts_ = np.concatenate((cnts_, vts), axis=0)
tk_count += c
callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
cnts = cnts_
title_w = float(parser_config.get("filename_embd_weight", 0.1))
vects = (title_w * tts + (1 - title_w) *
cnts) if len(tts) == len(cnts) else cnts
assert len(vects) == len(docs)
vector_size = 0
for i, d in enumerate(docs):
v = vects[i].tolist()
vector_size = len(v)
d["q_%d_vec" % len(v)] = v
return tk_count, vector_size
def run_raptor(row, chat_mdl, embd_mdl, callback=None):
vts, _ = embd_mdl.encode(["ok"])
vector_size = len(vts[0])
vctr_nm = "q_%d_vec" % vector_size
chunks = []
for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
fields=["content_with_weight", vctr_nm]):
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
raptor = Raptor(
row["parser_config"]["raptor"].get("max_cluster", 64),
chat_mdl,
embd_mdl,
row["parser_config"]["raptor"]["prompt"],
row["parser_config"]["raptor"]["max_token"],
row["parser_config"]["raptor"]["threshold"]
)
original_length = len(chunks)
raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
doc = {
"doc_id": row["doc_id"],
"kb_id": [str(row["kb_id"])],
"docnm_kwd": row["name"],
"title_tks": rag_tokenizer.tokenize(row["name"])
}
res = []
tk_count = 0
for content, vctr in chunks[original_length:]:
d = copy.deepcopy(doc)
md5 = hashlib.md5()
md5.update((content + str(d["doc_id"])).encode("utf-8"))
d["id"] = md5.hexdigest()
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.now().timestamp()
d[vctr_nm] = vctr.tolist()
d["content_with_weight"] = content
d["content_ltks"] = rag_tokenizer.tokenize(content)
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
res.append(d)
tk_count += num_tokens_from_string(content)
return res, tk_count, vector_size
def do_handle_task(r):
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
try:
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
except Exception as e:
callback(-1, msg=str(e))
raise
if r.get("task_type", "") == "raptor":
try:
chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
except Exception as e:
callback(-1, msg=str(e))
raise
else:
st = timer()
cks = build(r)
logging.info("Build chunks({}): {}".format(r["name"], timer() - st))
if cks is None:
return
if not cks:
callback(1., "No chunk! Done!")
return
# TODO: exception handler
## set_progress(r["did"], -1, "ERROR: ")
callback(
msg="Finished slicing files ({} chunks in {:.2f}s). Start to embedding the content.".format(len(cks),
timer() - st)
)
st = timer()
try:
tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
except Exception as e:
callback(-1, "Embedding error:{}".format(str(e)))
logging.exception("run_rembedding got exception")
tk_count = 0
raise
logging.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
callback(msg="Finished embedding (in {:.2f}s)! Start to build index!".format(timer() - st))
# logging.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
init_kb(r, vector_size)
chunk_count = len(set([c["id"] for c in cks]))
st = timer()
es_r = ""
es_bulk_size = 4
for b in range(0, len(cks), es_bulk_size):
es_r = settings.docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
if b % 128 == 0:
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
logging.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
if es_r:
callback(-1, "Insert chunk error, detail info please check log file. Please also check Elasticsearch/Infinity status!")
settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
logging.error('Insert chunk error: ' + str(es_r))
raise Exception('Insert chunk error: ' + str(es_r))
if TaskService.do_cancel(r["id"]):
settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
return
callback(msg="Indexing elapsed in {:.2f}s.".format(timer() - st))
callback(1., "Done!")
DocumentService.increment_chunk_num(
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
logging.info(
"Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
r["id"], tk_count, len(cks), timer() - st))
def handle_task():
global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
task = collect()
if task:
try:
logging.info(f"handle_task begin for task {json.dumps(task)}")
with mt_lock:
CURRENT_TASK = copy.deepcopy(task)
do_handle_task(task)
with mt_lock:
DONE_TASKS += 1
CURRENT_TASK = None
logging.info(f"handle_task done for task {json.dumps(task)}")
except Exception:
with mt_lock:
FAILED_TASKS += 1
CURRENT_TASK = None
logging.exception(f"handle_task got exception for task {json.dumps(task)}")
if PAYLOAD:
PAYLOAD.ack()
PAYLOAD = None
def report_status():
global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
while True:
try:
now = datetime.now()
group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
if group_info is not None:
PENDING_TASKS = int(group_info["pending"])
LAG_TASKS = int(group_info["lag"])
with mt_lock:
heartbeat = json.dumps({
"name": CONSUMER_NAME,
"now": now.isoformat(),
"boot_at": BOOT_AT,
"pending": PENDING_TASKS,
"lag": LAG_TASKS,
"done": DONE_TASKS,
"failed": FAILED_TASKS,
"current": CURRENT_TASK,
})
REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
if expired > 0:
REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
except Exception:
logging.exception("report_status got exception")
time.sleep(30)
def analyze_heap(snapshot1: tracemalloc.Snapshot, snapshot2: tracemalloc.Snapshot, snapshot_id: int, dump_full: bool):
msg = ""
if dump_full:
stats2 = snapshot2.statistics('lineno')
msg += f"{CONSUMER_NAME} memory usage of snapshot {snapshot_id}:\n"
for stat in stats2[:10]:
msg += f"{stat}\n"
stats1_vs_2 = snapshot2.compare_to(snapshot1, 'lineno')
msg += f"{CONSUMER_NAME} memory usage increase from snapshot {snapshot_id-1} to snapshot {snapshot_id}:\n"
for stat in stats1_vs_2[:10]:
msg += f"{stat}\n"
msg += f"{CONSUMER_NAME} detailed traceback for the top memory consumers:\n"
for stat in stats1_vs_2[:3]:
msg += '\n'.join(stat.traceback.format())
logging.info(msg)
def main():
settings.init_settings()
background_thread = threading.Thread(target=report_status)
background_thread.daemon = True
background_thread.start()
TRACE_MALLOC_DELTA = int(os.environ.get('TRACE_MALLOC_DELTA', "0"))
TRACE_MALLOC_FULL = int(os.environ.get('TRACE_MALLOC_FULL', "0"))
if TRACE_MALLOC_DELTA > 0:
if TRACE_MALLOC_FULL < TRACE_MALLOC_DELTA:
TRACE_MALLOC_FULL = TRACE_MALLOC_DELTA
tracemalloc.start()
snapshot1 = tracemalloc.take_snapshot()
while True:
handle_task()
num_tasks = DONE_TASKS + FAILED_TASKS
if TRACE_MALLOC_DELTA> 0 and num_tasks > 0 and num_tasks % TRACE_MALLOC_DELTA == 0:
snapshot2 = tracemalloc.take_snapshot()
analyze_heap(snapshot1, snapshot2, int(num_tasks/TRACE_MALLOC_DELTA), num_tasks % TRACE_MALLOC_FULL == 0)
snapshot1 = snapshot2
snapshot2 = None
if __name__ == "__main__":
main()