|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from zhipuai import ZhipuAI |
|
from dashscope import Generation |
|
from abc import ABC |
|
from openai import OpenAI |
|
import openai |
|
from ollama import Client |
|
from rag.nlp import is_english |
|
from rag.utils import num_tokens_from_string |
|
|
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
def chat(self, system, history, gen_conf): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
|
|
class GptTurbo(Base): |
|
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): |
|
if not base_url: base_url="https://api.openai.com/v1" |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf) |
|
ans = response.choices[0].message.content.strip() |
|
if response.choices[0].finish_reason == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
return ans, response.usage.total_tokens |
|
except openai.APIError as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
|
|
class MoonshotChat(GptTurbo): |
|
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"): |
|
if not base_url: base_url="https://api.moonshot.cn/v1" |
|
self.client = OpenAI( |
|
api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf) |
|
ans = response.choices[0].message.content.strip() |
|
if response.choices[0].finish_reason == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
return ans, response.usage.total_tokens |
|
except openai.APIError as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
|
|
class QWenChat(Base): |
|
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs): |
|
import dashscope |
|
dashscope.api_key = key |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
from http import HTTPStatus |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
response = Generation.call( |
|
self.model_name, |
|
messages=history, |
|
result_format='message', |
|
**gen_conf |
|
) |
|
ans = "" |
|
tk_count = 0 |
|
if response.status_code == HTTPStatus.OK: |
|
ans += response.output.choices[0]['message']['content'] |
|
tk_count += response.usage.total_tokens |
|
if response.output.choices[0].get("finish_reason", "") == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
return ans, tk_count |
|
|
|
return "**ERROR**: " + response.message, tk_count |
|
|
|
|
|
class ZhipuChat(Base): |
|
def __init__(self, key, model_name="glm-3-turbo", **kwargs): |
|
self.client = ZhipuAI(api_key=key) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf |
|
) |
|
ans = response.choices[0].message.content.strip() |
|
if response.choices[0].finish_reason == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
return ans, response.usage.total_tokens |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
|
|
class OllamaChat(Base): |
|
def __init__(self, key, model_name, **kwargs): |
|
self.client = Client(host=kwargs["base_url"]) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
options = {"temperature": gen_conf.get("temperature", 0.1), |
|
"num_predict": gen_conf.get("max_tokens", 128), |
|
"top_k": gen_conf.get("top_p", 0.3), |
|
"presence_penalty": gen_conf.get("presence_penalty", 0.4), |
|
"frequency_penalty": gen_conf.get("frequency_penalty", 0.7), |
|
} |
|
response = self.client.chat( |
|
model=self.model_name, |
|
messages=history, |
|
options=options |
|
) |
|
ans = response["message"]["content"].strip() |
|
return ans, response["eval_count"] + response.get("prompt_eval_count", 0) |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
|
|
class XinferenceChat(Base): |
|
def __init__(self, key=None, model_name="", base_url=""): |
|
self.client = OpenAI(api_key="xxx", base_url=base_url) |
|
self.model_name = model_name |
|
|
|
def chat(self, system, history, gen_conf): |
|
if system: |
|
history.insert(0, {"role": "system", "content": system}) |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
**gen_conf) |
|
ans = response.choices[0].message.content.strip() |
|
if response.choices[0].finish_reason == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" |
|
return ans, response.usage.total_tokens |
|
except openai.APIError as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
|