|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from deepdoc.vision.seeit import draw_box
|
|
from deepdoc.vision import OCR, init_in_out
|
|
import argparse
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
sys.path.insert(
|
|
0,
|
|
os.path.abspath(
|
|
os.path.join(
|
|
os.path.dirname(
|
|
os.path.abspath(__file__)),
|
|
'../../')))
|
|
|
|
|
|
def main(args):
|
|
ocr = OCR()
|
|
images, outputs = init_in_out(args)
|
|
|
|
for i, img in enumerate(images):
|
|
bxs = ocr(np.array(img))
|
|
bxs = [(line[0], line[1][0]) for line in bxs]
|
|
bxs = [{
|
|
"text": t,
|
|
"bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]],
|
|
"type": "ocr",
|
|
"score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
|
|
img = draw_box(images[i], bxs, ["ocr"], 1.)
|
|
img.save(outputs[i], quality=95)
|
|
with open(outputs[i] + ".txt", "w+") as f:
|
|
f.write("\n".join([o["text"] for o in bxs]))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--inputs',
|
|
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
|
|
required=True)
|
|
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'",
|
|
default="./ocr_outputs")
|
|
args = parser.parse_args()
|
|
main(args)
|
|
|