|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import math |
|
import re |
|
import logging |
|
import copy |
|
from elasticsearch_dsl import Q |
|
|
|
from rag.nlp import rag_tokenizer, term_weight, synonym |
|
|
|
class EsQueryer: |
|
def __init__(self, es): |
|
self.tw = term_weight.Dealer() |
|
self.es = es |
|
self.syn = synonym.Dealer() |
|
self.flds = ["ask_tks^10", "ask_small_tks"] |
|
|
|
@staticmethod |
|
def subSpecialChar(line): |
|
return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip() |
|
|
|
@staticmethod |
|
def isChinese(line): |
|
arr = re.split(r"[ \t]+", line) |
|
if len(arr) <= 3: |
|
return True |
|
e = 0 |
|
for t in arr: |
|
if not re.match(r"[a-zA-Z]+$", t): |
|
e += 1 |
|
return e * 1. / len(arr) >= 0.7 |
|
|
|
@staticmethod |
|
def rmWWW(txt): |
|
patts = [ |
|
(r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""), |
|
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "), |
|
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down) ", " ") |
|
] |
|
for r, p in patts: |
|
txt = re.sub(r, p, txt, flags=re.IGNORECASE) |
|
return txt |
|
|
|
def question(self, txt, tbl="qa", min_match="60%"): |
|
txt = re.sub( |
|
r"[ :\r\n\t,,。??/`!!&\^%%]+", |
|
" ", |
|
rag_tokenizer.tradi2simp( |
|
rag_tokenizer.strQ2B( |
|
txt.lower()))).strip() |
|
txt = EsQueryer.rmWWW(txt) |
|
|
|
if not self.isChinese(txt): |
|
tks = rag_tokenizer.tokenize(txt).split(" ") |
|
tks_w = self.tw.weights(tks) |
|
tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w] |
|
tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk] |
|
tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk] |
|
q = ["{}^{:.4f}".format(tk, w) for tk, w in tks_w if tk] |
|
for i in range(1, len(tks_w)): |
|
q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2)) |
|
if not q: |
|
q.append(txt) |
|
return Q("bool", |
|
must=Q("query_string", fields=self.flds, |
|
type="best_fields", query=" ".join(q), |
|
boost=1) |
|
), tks |
|
|
|
def need_fine_grained_tokenize(tk): |
|
if len(tk) < 4: |
|
return False |
|
if re.match(r"[0-9a-z\.\+#_\*-]+$", tk): |
|
return False |
|
return True |
|
|
|
qs, keywords = [], [] |
|
for tt in self.tw.split(txt)[:256]: |
|
if not tt: |
|
continue |
|
twts = self.tw.weights([tt]) |
|
syns = self.syn.lookup(tt) |
|
logging.info(json.dumps(twts, ensure_ascii=False)) |
|
tms = [] |
|
for tk, w in sorted(twts, key=lambda x: x[1] * -1): |
|
sm = rag_tokenizer.fine_grained_tokenize(tk).split(" ") if need_fine_grained_tokenize(tk) else [] |
|
sm = [ |
|
re.sub( |
|
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+", |
|
"", |
|
m) for m in sm] |
|
sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1] |
|
sm = [m for m in sm if len(m) > 1] |
|
if len(sm) < 2: |
|
sm = [] |
|
|
|
keywords.append(re.sub(r"[ \\\"']+", "", tk)) |
|
if len(keywords) >= 12: break |
|
|
|
tk_syns = self.syn.lookup(tk) |
|
tk = EsQueryer.subSpecialChar(tk) |
|
if tk.find(" ") > 0: |
|
tk = "\"%s\"" % tk |
|
if tk_syns: |
|
tk = f"({tk} %s)" % " ".join(tk_syns) |
|
if sm: |
|
tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % ( |
|
" ".join(sm), " ".join(sm)) |
|
if tk.strip(): |
|
tms.append((tk, w)) |
|
|
|
tms = " ".join([f"({t})^{w}" for t, w in tms]) |
|
|
|
if len(twts) > 1: |
|
tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts])) |
|
if re.match(r"[0-9a-z ]+$", tt): |
|
tms = f"(\"{tt}\" OR \"%s\")" % rag_tokenizer.tokenize(tt) |
|
|
|
syns = " OR ".join( |
|
["\"%s\"^0.7" % EsQueryer.subSpecialChar(rag_tokenizer.tokenize(s)) for s in syns]) |
|
if syns: |
|
tms = f"({tms})^5 OR ({syns})^0.7" |
|
|
|
qs.append(tms) |
|
|
|
flds = copy.deepcopy(self.flds) |
|
mst = [] |
|
if qs: |
|
mst.append( |
|
Q("query_string", fields=flds, type="best_fields", |
|
query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match) |
|
) |
|
|
|
return Q("bool", |
|
must=mst, |
|
), keywords |
|
|
|
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, |
|
vtweight=0.7): |
|
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity |
|
import numpy as np |
|
sims = CosineSimilarity([avec], bvecs) |
|
tksim = self.token_similarity(atks, btkss) |
|
return np.array(sims[0]) * vtweight + \ |
|
np.array(tksim) * tkweight, tksim, sims[0] |
|
|
|
def token_similarity(self, atks, btkss): |
|
def toDict(tks): |
|
d = {} |
|
if isinstance(tks, str): |
|
tks = tks.split(" ") |
|
for t, c in self.tw.weights(tks): |
|
if t not in d: |
|
d[t] = 0 |
|
d[t] += c |
|
return d |
|
|
|
atks = toDict(atks) |
|
btkss = [toDict(tks) for tks in btkss] |
|
return [self.similarity(atks, btks) for btks in btkss] |
|
|
|
def similarity(self, qtwt, dtwt): |
|
if isinstance(dtwt, type("")): |
|
dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))} |
|
if isinstance(qtwt, type("")): |
|
qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))} |
|
s = 1e-9 |
|
for k, v in qtwt.items(): |
|
if k in dtwt: |
|
s += v |
|
q = 1e-9 |
|
for k, v in qtwt.items(): |
|
q += v |
|
|
|
|
|
|
|
return s / q / max(1, math.sqrt(math.log10(max(len(qtwt.keys()), len(dtwt.keys()))))) |
|
|