|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from tika import parser
|
|
from io import BytesIO
|
|
import re
|
|
from rag.app import laws
|
|
from rag.nlp import rag_tokenizer, tokenize, find_codec
|
|
from deepdoc.parser import PdfParser, ExcelParser, PlainParser, HtmlParser
|
|
|
|
|
|
class Pdf(PdfParser):
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
callback(msg="OCR is running...")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished")
|
|
|
|
from timeit import default_timer as timer
|
|
start = timer()
|
|
self._layouts_rec(zoomin, drop=False)
|
|
callback(0.63, "Layout analysis finished.")
|
|
print("layouts:", timer() - start)
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.65, "Table analysis finished.")
|
|
self._text_merge()
|
|
callback(0.67, "Text merging finished")
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
self._concat_downward()
|
|
|
|
sections = [(b["text"], self.get_position(b, zoomin))
|
|
for i, b in enumerate(self.boxes)]
|
|
for (img, rows), poss in tbls:
|
|
if not rows:continue
|
|
sections.append((rows if isinstance(rows, str) else rows[0],
|
|
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
|
return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (
|
|
x[-1][0][0], x[-1][0][3], x[-1][0][1]))], None
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Supported file formats are docx, pdf, excel, txt.
|
|
One file forms a chunk which maintains original text order.
|
|
"""
|
|
|
|
eng = lang.lower() == "english"
|
|
|
|
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections = [txt for txt in laws.Docx()(filename, binary) if txt]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
pdf_parser = Pdf() if kwargs.get(
|
|
"parser_config", {}).get(
|
|
"layout_recognize", True) else PlainParser()
|
|
sections, _ = pdf_parser(
|
|
filename if not binary else binary, to_page=to_page, callback=callback)
|
|
sections = [s for s, _ in sections if s]
|
|
|
|
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
excel_parser = ExcelParser()
|
|
sections = excel_parser.html(binary, 1000000000)
|
|
|
|
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:
|
|
break
|
|
txt += l
|
|
sections = txt.split("\n")
|
|
sections = [s for s in sections if s]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections = HtmlParser()(filename, binary)
|
|
sections = [s for s in sections if s]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.doc$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
binary = BytesIO(binary)
|
|
doc_parsed = parser.from_buffer(binary)
|
|
sections = doc_parsed['content'].split('\n')
|
|
sections = [l for l in sections if l]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
"file type not supported yet(doc, docx, pdf, txt supported)")
|
|
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
|
tokenize(doc, "\n".join(sections), eng)
|
|
return [doc]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
|
|
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
|
|