|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
import re
|
|
|
|
from api.db import ParserType
|
|
from io import BytesIO
|
|
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, docx_question_level
|
|
from deepdoc.parser import PdfParser, PlainParser
|
|
from rag.utils import num_tokens_from_string
|
|
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
|
|
from docx import Document
|
|
from PIL import Image
|
|
|
|
class Pdf(PdfParser):
|
|
def __init__(self):
|
|
self.model_speciess = ParserType.MANUAL.value
|
|
super().__init__()
|
|
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
from timeit import default_timer as timer
|
|
start = timer()
|
|
callback(msg="OCR is running...")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished.")
|
|
|
|
|
|
|
|
print("OCR:", timer() - start)
|
|
|
|
self._layouts_rec(zoomin)
|
|
callback(0.65, "Layout analysis finished.")
|
|
print("layouts:", timer() - start)
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.67, "Table analysis finished.")
|
|
self._text_merge()
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
self._concat_downward()
|
|
self._filter_forpages()
|
|
callback(0.68, "Text merging finished")
|
|
|
|
|
|
for b in self.boxes:
|
|
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
|
|
|
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
|
|
for i, b in enumerate(self.boxes)], tbls
|
|
|
|
class Docx(DocxParser):
|
|
def __init__(self):
|
|
pass
|
|
def get_picture(self, document, paragraph):
|
|
img = paragraph._element.xpath('.//pic:pic')
|
|
if not img:
|
|
return None
|
|
img = img[0]
|
|
embed = img.xpath('.//a:blip/@r:embed')[0]
|
|
related_part = document.part.related_parts[embed]
|
|
image = related_part.image
|
|
image = Image.open(BytesIO(image.blob))
|
|
return image
|
|
def concat_img(self, img1, img2):
|
|
if img1 and not img2:
|
|
return img1
|
|
if not img1 and img2:
|
|
return img2
|
|
if not img1 and not img2:
|
|
return None
|
|
width1, height1 = img1.size
|
|
width2, height2 = img2.size
|
|
|
|
new_width = max(width1, width2)
|
|
new_height = height1 + height2
|
|
new_image = Image.new('RGB', (new_width, new_height))
|
|
|
|
new_image.paste(img1, (0, 0))
|
|
new_image.paste(img2, (0, height1))
|
|
|
|
return new_image
|
|
|
|
def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
self.doc = Document(
|
|
filename) if not binary else Document(BytesIO(binary))
|
|
pn = 0
|
|
last_answer, last_image = "", None
|
|
question_stack, level_stack = [], []
|
|
ti_list = []
|
|
for p in self.doc.paragraphs:
|
|
if pn > to_page:
|
|
break
|
|
question_level, p_text = 0, ''
|
|
if from_page <= pn < to_page and p.text.strip():
|
|
question_level, p_text = docx_question_level(p)
|
|
if not question_level or question_level > 6:
|
|
last_answer = f'{last_answer}\n{p_text}'
|
|
current_image = self.get_picture(self.doc, p)
|
|
last_image = self.concat_img(last_image, current_image)
|
|
else:
|
|
if last_answer or last_image:
|
|
sum_question = '\n'.join(question_stack)
|
|
if sum_question:
|
|
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
|
last_answer, last_image = '', None
|
|
|
|
i = question_level
|
|
while question_stack and i <= level_stack[-1]:
|
|
question_stack.pop()
|
|
level_stack.pop()
|
|
question_stack.append(p_text)
|
|
level_stack.append(question_level)
|
|
for run in p.runs:
|
|
if 'lastRenderedPageBreak' in run._element.xml:
|
|
pn += 1
|
|
continue
|
|
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
|
pn += 1
|
|
if last_answer:
|
|
sum_question = '\n'.join(question_stack)
|
|
if sum_question:
|
|
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
|
|
|
tbls = []
|
|
for tb in self.doc.tables:
|
|
html= "<table>"
|
|
for r in tb.rows:
|
|
html += "<tr>"
|
|
i = 0
|
|
while i < len(r.cells):
|
|
span = 1
|
|
c = r.cells[i]
|
|
for j in range(i+1, len(r.cells)):
|
|
if c.text == r.cells[j].text:
|
|
span += 1
|
|
i = j
|
|
i += 1
|
|
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
|
html += "</tr>"
|
|
html += "</table>"
|
|
tbls.append(((None, html), ""))
|
|
return ti_list, tbls
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Only pdf is supported.
|
|
"""
|
|
pdf_parser = None
|
|
doc = {
|
|
"docnm_kwd": filename
|
|
}
|
|
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
|
|
|
eng = lang.lower() == "english"
|
|
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
pdf_parser = Pdf() if kwargs.get(
|
|
"parser_config", {}).get(
|
|
"layout_recognize", True) else PlainParser()
|
|
sections, tbls = pdf_parser(filename if not binary else binary,
|
|
from_page=from_page, to_page=to_page, callback=callback)
|
|
if sections and len(sections[0]) < 3:
|
|
sections = [(t, l, [[0] * 5]) for t, l in sections]
|
|
|
|
|
|
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
|
|
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
|
|
most_level = max(0, max_lvl - 1)
|
|
levels = []
|
|
for txt, _, _ in sections:
|
|
for t, lvl in pdf_parser.outlines:
|
|
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
|
|
tks_ = set([txt[i] + txt[i + 1]
|
|
for i in range(min(len(t), len(txt) - 1))])
|
|
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
|
|
levels.append(lvl)
|
|
break
|
|
else:
|
|
levels.append(max_lvl + 1)
|
|
|
|
else:
|
|
bull = bullets_category([txt for txt, _, _ in sections])
|
|
most_level, levels = title_frequency(
|
|
bull, [(txt, l) for txt, l, poss in sections])
|
|
|
|
assert len(sections) == len(levels)
|
|
sec_ids = []
|
|
sid = 0
|
|
for i, lvl in enumerate(levels):
|
|
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
|
sid += 1
|
|
sec_ids.append(sid)
|
|
|
|
|
|
sections = [(txt, sec_ids[i], poss)
|
|
for i, (txt, _, poss) in enumerate(sections)]
|
|
for (img, rows), poss in tbls:
|
|
if not rows: continue
|
|
sections.append((rows if isinstance(rows, str) else rows[0], -1,
|
|
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
|
|
|
def tag(pn, left, right, top, bottom):
|
|
if pn + left + right + top + bottom == 0:
|
|
return ""
|
|
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
|
.format(pn, left, right, top, bottom)
|
|
|
|
chunks = []
|
|
last_sid = -2
|
|
tk_cnt = 0
|
|
for txt, sec_id, poss in sorted(sections, key=lambda x: (
|
|
x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
|
poss = "\t".join([tag(*pos) for pos in poss])
|
|
if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
|
|
if chunks:
|
|
chunks[-1] += "\n" + txt + poss
|
|
tk_cnt += num_tokens_from_string(txt)
|
|
continue
|
|
chunks.append(txt + poss)
|
|
tk_cnt = num_tokens_from_string(txt)
|
|
if sec_id > -1:
|
|
last_sid = sec_id
|
|
|
|
res = tokenize_table(tbls, doc, eng)
|
|
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
|
return res
|
|
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
|
docx_parser = Docx()
|
|
ti_list, tbls = docx_parser(filename, binary,
|
|
from_page=0, to_page=10000, callback=callback)
|
|
res = tokenize_table(tbls, doc, eng)
|
|
for text, image in ti_list:
|
|
d = copy.deepcopy(doc)
|
|
d['image'] = image
|
|
tokenize(d, text, eng)
|
|
res.append(d)
|
|
return res
|
|
else:
|
|
raise NotImplementedError("file type not supported yet(pdf and docx supported)")
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
|
|
|
|
chunk(sys.argv[1], callback=dummy) |