|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
import threading |
|
import requests |
|
import torch |
|
from FlagEmbedding import FlagReranker |
|
from huggingface_hub import snapshot_download |
|
import os |
|
from abc import ABC |
|
import numpy as np |
|
from api.utils.file_utils import get_home_cache_dir |
|
from rag.utils import num_tokens_from_string, truncate |
|
|
|
def sigmoid(x): |
|
return 1 / (1 + np.exp(-x)) |
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
def similarity(self, query: str, texts: list): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
|
|
class DefaultRerank(Base): |
|
_model = None |
|
_model_lock = threading.Lock() |
|
|
|
def __init__(self, key, model_name, **kwargs): |
|
""" |
|
If you have trouble downloading HuggingFace models, -_^ this might help!! |
|
|
|
For Linux: |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
|
For Windows: |
|
Good luck |
|
^_- |
|
|
|
""" |
|
if not DefaultRerank._model: |
|
with DefaultRerank._model_lock: |
|
if not DefaultRerank._model: |
|
try: |
|
DefaultRerank._model = FlagReranker(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), use_fp16=torch.cuda.is_available()) |
|
except Exception as e: |
|
model_dir = snapshot_download(repo_id= model_name, |
|
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), |
|
local_dir_use_symlinks=False) |
|
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available()) |
|
self._model = DefaultRerank._model |
|
|
|
def similarity(self, query: str, texts: list): |
|
pairs = [(query,truncate(t, 2048)) for t in texts] |
|
token_count = 0 |
|
for _, t in pairs: |
|
token_count += num_tokens_from_string(t) |
|
batch_size = 4096 |
|
res = [] |
|
for i in range(0, len(pairs), batch_size): |
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048) |
|
scores = sigmoid(np.array(scores)).tolist() |
|
if isinstance(scores, float): res.append(scores) |
|
else: res.extend(scores) |
|
return np.array(res), token_count |
|
|
|
|
|
class JinaRerank(Base): |
|
def __init__(self, key, model_name="jina-reranker-v1-base-en", |
|
base_url="https://api.jina.ai/v1/rerank"): |
|
self.base_url = "https://api.jina.ai/v1/rerank" |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}" |
|
} |
|
self.model_name = model_name |
|
|
|
def similarity(self, query: str, texts: list): |
|
texts = [truncate(t, 8196) for t in texts] |
|
data = { |
|
"model": self.model_name, |
|
"query": query, |
|
"documents": texts, |
|
"top_n": len(texts) |
|
} |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
return np.array([d["relevance_score"] for d in res["results"]]), res["usage"]["total_tokens"] |
|
|
|
|
|
class YoudaoRerank(DefaultRerank): |
|
_model = None |
|
_model_lock = threading.Lock() |
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs): |
|
from BCEmbedding import RerankerModel |
|
if not YoudaoRerank._model: |
|
with YoudaoRerank._model_lock: |
|
if not YoudaoRerank._model: |
|
try: |
|
print("LOADING BCE...") |
|
YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join( |
|
get_home_cache_dir(), |
|
re.sub(r"^[a-zA-Z]+/", "", model_name))) |
|
except Exception as e: |
|
YoudaoRerank._model = RerankerModel( |
|
model_name_or_path=model_name.replace( |
|
"maidalun1020", "InfiniFlow")) |
|
|
|
self._model = YoudaoRerank._model |
|
|
|
def similarity(self, query: str, texts: list): |
|
pairs = [(query, truncate(t, self._model.max_length)) for t in texts] |
|
token_count = 0 |
|
for _, t in pairs: |
|
token_count += num_tokens_from_string(t) |
|
batch_size = 32 |
|
res = [] |
|
for i in range(0, len(pairs), batch_size): |
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length) |
|
scores = sigmoid(np.array(scores)).tolist() |
|
if isinstance(scores, float): res.append(scores) |
|
else: res.extend(scores) |
|
return np.array(res), token_count |
|
|
|
|
|
class XInferenceRerank(Base): |
|
def __init__(self, key="xxxxxxx", model_name="", base_url=""): |
|
self.model_name = model_name |
|
self.base_url = base_url |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"accept": "application/json" |
|
} |
|
|
|
def similarity(self, query: str, texts: list): |
|
data = { |
|
"model": self.model_name, |
|
"query": query, |
|
"return_documents": "true", |
|
"return_len": "true", |
|
"documents": texts |
|
} |
|
res = requests.post(self.base_url, headers=self.headers, json=data).json() |
|
return np.array([d["relevance_score"] for d in res["results"]]), res["meta"]["tokens"]["input_tokens"]+res["meta"]["tokens"]["output_tokens"] |
|
|