Kevin Hu
remove file size check for sdk API (#3066)
6fd4084
raw
history blame
27.4 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pathlib
import datetime
from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import rag_tokenizer
from api.db import LLMType, ParserType
from api.db.services.llm_service import TenantLLMService
from api.settings import kg_retrievaler
import hashlib
import re
from api.utils.api_utils import token_required
from api.db.db_models import Task
from api.db.services.task_service import TaskService, queue_tasks
from api.utils.api_utils import server_error_response
from api.utils.api_utils import get_result, get_error_data_result
from io import BytesIO
from elasticsearch_dsl import Q
from flask import request, send_file
from api.db import FileSource, TaskStatus, FileType
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.settings import RetCode, retrievaler
from api.utils.api_utils import construct_json_result,get_parser_config
from rag.nlp import search
from rag.utils import rmSpace
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.storage_factory import STORAGE_IMPL
import os
@manager.route('/datasets/<dataset_id>/documents', methods=['POST'])
@token_required
def upload(dataset_id, tenant_id):
if 'file' not in request.files:
return get_error_data_result(
retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_result(
retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if not e:
raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
err, files = FileService.upload_document(kb, file_objs, tenant_id)
if err:
return get_result(
retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR)
# rename key's name
renamed_doc_list = []
for file in files:
doc = file[0]
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method"
}
renamed_doc = {}
for key, value in doc.items():
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
renamed_doc["run"] = "UNSTART"
renamed_doc_list.append(renamed_doc)
return get_result(data=renamed_doc_list)
@manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['PUT'])
@token_required
def update_doc(tenant_id, dataset_id, document_id):
req = request.json
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg="You don't own the dataset.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(retmsg="The dataset doesn't own the document.")
doc = doc[0]
if "chunk_count" in req:
if req["chunk_count"] != doc.chunk_num:
return get_error_data_result(retmsg="Can't change `chunk_count`.")
if "token_count" in req:
if req["token_count"] != doc.token_num:
return get_error_data_result(retmsg="Can't change `token_count`.")
if "progress" in req:
if req['progress'] != doc.progress:
return get_error_data_result(retmsg="Can't change `progress`.")
if "name" in req and req["name"] != doc.name:
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_result(retmsg="The extension of file can't be changed", retcode=RetCode.ARGUMENT_ERROR)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_error_data_result(
retmsg="Duplicated document name in the same dataset.")
if not DocumentService.update_by_id(
document_id, {"name": req["name"]}):
return get_error_data_result(
retmsg="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(document_id)
if informs:
e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if "chunk_method" in req:
valid_chunk_method = {"naive","manual","qa","table","paper","book","laws","presentation","picture","one","knowledge_graph","email"}
if req.get("chunk_method") not in valid_chunk_method:
return get_error_data_result(f"`chunk_method` {req['chunk_method']} doesn't exist")
if doc.parser_id.lower() == req["chunk_method"].lower():
return get_result()
if doc.type == FileType.VISUAL or re.search(
r"\.(ppt|pptx|pages)$", doc.name):
return get_error_data_result(retmsg="Not supported yet!")
e = DocumentService.update_by_id(doc.id,
{"parser_id": req["chunk_method"], "progress": 0, "progress_msg": "",
"run": TaskStatus.UNSTART.value})
if not e:
return get_error_data_result(retmsg="Document not found!")
req["parser_config"] = get_parser_config(req["chunk_method"], req.get("parser_config"))
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
doc.process_duation * -1)
if not e:
return get_error_data_result(retmsg="Document not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
return get_result()
@manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['GET'])
@token_required
def download(tenant_id, dataset_id, document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f'You do not own the dataset {dataset_id}.')
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(retmsg=f'The dataset not own the document {document_id}.')
# The process of downloading
doc_id, doc_location = File2DocumentService.get_storage_address(doc_id=document_id) # minio address
file_stream = STORAGE_IMPL.get(doc_id, doc_location)
if not file_stream:
return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
file = BytesIO(file_stream)
# Use send_file with a proper filename and MIME type
return send_file(
file,
as_attachment=True,
download_name=doc[0].name,
mimetype='application/octet-stream' # Set a default MIME type
)
@manager.route('/datasets/<dataset_id>/documents', methods=['GET'])
@token_required
def list_docs(dataset_id, tenant_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
id = request.args.get("id")
if not DocumentService.query(id=id,kb_id=dataset_id):
return get_error_data_result(retmsg=f"You don't own the document {id}.")
offset = int(request.args.get("offset", 1))
keywords = request.args.get("keywords","")
limit = int(request.args.get("limit", 1024))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False":
desc = False
else:
desc = True
docs, tol = DocumentService.get_list(dataset_id, offset, limit, orderby, desc, keywords, id)
# rename key's name
renamed_doc_list = []
for doc in docs:
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method"
}
run_mapping = {
"0" :"UNSTART",
"1":"RUNNING",
"2":"CANCEL",
"3":"DONE",
"4":"FAIL"
}
renamed_doc = {}
for key, value in doc.items():
if key =="run":
renamed_doc["run"]=run_mapping.get(str(value))
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
renamed_doc_list.append(renamed_doc)
return get_result(data={"total": tol, "docs": renamed_doc_list})
@manager.route('/datasets/<dataset_id>/documents', methods=['DELETE'])
@token_required
def delete(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
req = request.json
if not req:
doc_ids=None
else:
doc_ids=req.get("ids")
if not doc_ids:
doc_list = []
docs=DocumentService.query(kb_id=dataset_id)
for doc in docs:
doc_list.append(doc.id)
else:
doc_list=doc_ids
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
for doc_id in doc_list:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_error_data_result(retmsg="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_error_data_result(retmsg="Tenant not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
retmsg="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
except Exception as e:
errors += str(e)
if errors:
return get_result(retmsg=errors, retcode=RetCode.SERVER_ERROR)
return get_result()
@manager.route('/datasets/<dataset_id>/chunks', methods=['POST'])
@token_required
def parse(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc = DocumentService.query(id=id,kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {id}.")
if doc[0].progress != 0.0:
return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
info = {"run": "1", "progress": 0}
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
DocumentService.update_by_id(id, info)
# if str(req["run"]) == TaskStatus.CANCEL.value:
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
TaskService.filter_delete([Task.doc_id == id])
e, doc = DocumentService.get_by_id(id)
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
return get_result()
@manager.route('/datasets/<dataset_id>/chunks', methods=['DELETE'])
@token_required
def stop_parsing(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {id}.")
if doc[0].progress == 100.0 or doc[0].progress == 0.0:
return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
info = {"run": "2", "progress": 0}
DocumentService.update_by_id(id, info)
# if str(req["run"]) == TaskStatus.CANCEL.value:
tenant_id = DocumentService.get_tenant_id(id)
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
return get_result()
@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['GET'])
@token_required
def list_chunks(tenant_id,dataset_id,document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc=DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc=doc[0]
req = request.args
doc_id = document_id
page = int(req.get("offset", 1))
size = int(req.get("limit", 30))
question = req.get("keywords", "")
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method"
}
run_mapping = {
"0": "UNSTART",
"1": "RUNNING",
"2": "CANCEL",
"3": "DONE",
"4": "FAIL"
}
doc=doc.to_dict()
renamed_doc = {}
for key, value in doc.items():
if key == "run":
renamed_doc["run"] = run_mapping.get(str(value))
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
res = {"total": sres.total, "chunks": [], "doc": renamed_doc}
origin_chunks = []
sign = 0
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", "").split("\t")
}
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss
origin_chunks.append(d)
if req.get("id"):
if req.get("id") == id:
origin_chunks.clear()
origin_chunks.append(d)
sign = 1
break
if req.get("id"):
if sign == 0:
return get_error_data_result(f"Can't find this chunk {req.get('id')}")
for chunk in origin_chunks:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"img_id": "image_id"
}
renamed_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
res["chunks"].append(renamed_chunk)
return get_result(data=res)
@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['POST'])
@token_required
def add_chunk(tenant_id,dataset_id,document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc = doc[0]
req = request.json
if not req.get("content"):
return get_error_data_result(retmsg="`content` is required")
if "important_keywords" in req:
if type(req["important_keywords"]) != list:
return get_error_data_result("`important_keywords` is required to be a list")
md5 = hashlib.md5()
md5.update((req["content"] + document_id).encode("utf-8"))
chunk_id = md5.hexdigest()
d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]),
"content_with_weight": req["content"]}
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req.get("important_keywords", [])
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_keywords", [])))
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["doc_id"] = doc.id
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id)
v, c = embd_mdl.encode([doc.name, req["content"]])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
d["chunk_id"] = chunk_id
# rename keys
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"kb_id": "dataset_id",
"create_timestamp_flt": "create_timestamp",
"create_time": "create_time",
"document_keyword": "document",
}
renamed_chunk = {}
for key, value in d.items():
if key in key_mapping:
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
return get_result(data={"chunk": renamed_chunk})
# return get_result(data={"chunk_id": chunk_id})
@manager.route('datasets/<dataset_id>/documents/<document_id>/chunks', methods=['DELETE'])
@token_required
def rm_chunk(tenant_id,dataset_id,document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc = doc[0]
req = request.json
if not req.get("chunk_ids"):
return get_error_data_result("`chunk_ids` is required")
query = {
"doc_ids": [doc.id], "page": 1, "size": 1024, "question": "", "sort": True}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
for chunk_id in req.get("chunk_ids"):
if chunk_id not in sres.ids:
return get_error_data_result(f"Chunk {chunk_id} not found")
if not ELASTICSEARCH.deleteByQuery(
Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)):
return get_error_data_result(retmsg="Index updating failure")
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
return get_result()
@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>', methods=['PUT'])
@token_required
def update_chunk(tenant_id,dataset_id,document_id,chunk_id):
try:
res = ELASTICSEARCH.get(
chunk_id, search.index_name(
tenant_id))
except Exception as e:
return get_error_data_result(f"Can't find this chunk {chunk_id}")
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc = doc[0]
query = {
"doc_ids": [document_id], "page": 1, "size": 1024, "question": "", "sort": True
}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
if chunk_id not in sres.ids:
return get_error_data_result(f"You don't own the chunk {chunk_id}")
req = request.json
content=res["_source"].get("content_with_weight")
d = {
"id": chunk_id,
"content_with_weight": req.get("content",content)}
d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
if "important_keywords" in req:
if not isinstance(req["important_keywords"],list):
return get_error_data_result("`important_keywords` should be a list")
d["important_kwd"] = req.get("important_keywords")
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
if "available" in req:
d["available_int"] = int(req["available"])
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id)
if doc.parser_id == ParserType.QA:
arr = [
t for t in re.split(
r"[\n\t]",
d["content_with_weight"]) if len(t) > 1]
if len(arr) != 2:
return get_error_data_result(
retmsg="Q&A must be separated by TAB/ENTER key.")
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(d, arr[0], arr[1], not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
v, c = embd_mdl.encode([doc.name, d["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
return get_result()
@manager.route('/retrieval', methods=['POST'])
@token_required
def retrieval_test(tenant_id):
req = request.json
if not req.get("dataset_ids"):
return get_error_data_result("`datasets` is required.")
kb_ids = req["dataset_ids"]
if not isinstance(kb_ids,list):
return get_error_data_result("`datasets` should be a list")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
for id in kb_ids:
if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.")
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
return get_result(
retmsg='Datasets use different embedding models."',
retcode=RetCode.AUTHENTICATION_ERROR)
if "question" not in req:
return get_error_data_result("`question` is required.")
page = int(req.get("offset", 1))
size = int(req.get("limit", 1024))
question = req["question"]
doc_ids = req.get("document_ids", [])
if not isinstance(doc_ids,list):
return get_error_data_result("`documents` should be a list")
doc_ids_list=KnowledgebaseService.list_documents_by_ids(kb_ids)
for doc_id in doc_ids:
if doc_id not in doc_ids_list:
return get_error_data_result(f"The datasets don't own the document {doc_id}")
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
if req.get("highlight")=="False" or req.get("highlight")=="false":
highlight = False
else:
highlight = True
try:
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(retmsg="Dataset not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=highlight)
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
##rename keys
renamed_chunks = []
for chunk in ranks["chunks"]:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"docnm_kwd": "document_keyword"
}
rename_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
rename_chunk[new_key] = value
renamed_chunks.append(rename_chunk)
ranks["chunks"] = renamed_chunks
return get_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_result(retmsg=f'No chunk found! Check the chunk status please!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e)