|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import sys |
|
from api.utils.log_utils import initRootLogger |
|
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache |
|
|
|
CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1] |
|
CONSUMER_NAME = "task_executor_" + CONSUMER_NO |
|
initRootLogger(CONSUMER_NAME) |
|
|
|
import logging |
|
import os |
|
from datetime import datetime |
|
import json |
|
import xxhash |
|
import copy |
|
import re |
|
import time |
|
import threading |
|
from functools import partial |
|
from io import BytesIO |
|
from multiprocessing.context import TimeoutError |
|
from timeit import default_timer as timer |
|
import tracemalloc |
|
|
|
import numpy as np |
|
from peewee import DoesNotExist |
|
|
|
from api.db import LLMType, ParserType, TaskStatus |
|
from api.db.services.dialog_service import keyword_extraction, question_proposal, content_tagging |
|
from api.db.services.document_service import DocumentService |
|
from api.db.services.llm_service import LLMBundle |
|
from api.db.services.task_service import TaskService |
|
from api.db.services.file2document_service import File2DocumentService |
|
from api import settings |
|
from api.versions import get_ragflow_version |
|
from api.db.db_models import close_connection |
|
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \ |
|
knowledge_graph, email, tag |
|
from rag.nlp import search, rag_tokenizer |
|
from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor |
|
from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME, print_rag_settings, TAG_FLD, PAGERANK_FLD |
|
from rag.utils import num_tokens_from_string |
|
from rag.utils.redis_conn import REDIS_CONN, Payload |
|
from rag.utils.storage_factory import STORAGE_IMPL |
|
|
|
BATCH_SIZE = 64 |
|
|
|
FACTORY = { |
|
"general": naive, |
|
ParserType.NAIVE.value: naive, |
|
ParserType.PAPER.value: paper, |
|
ParserType.BOOK.value: book, |
|
ParserType.PRESENTATION.value: presentation, |
|
ParserType.MANUAL.value: manual, |
|
ParserType.LAWS.value: laws, |
|
ParserType.QA.value: qa, |
|
ParserType.TABLE.value: table, |
|
ParserType.RESUME.value: resume, |
|
ParserType.PICTURE.value: picture, |
|
ParserType.ONE.value: one, |
|
ParserType.AUDIO.value: audio, |
|
ParserType.EMAIL.value: email, |
|
ParserType.KG.value: knowledge_graph, |
|
ParserType.TAG.value: tag |
|
} |
|
|
|
CONSUMER_NAME = "task_consumer_" + CONSUMER_NO |
|
PAYLOAD: Payload | None = None |
|
BOOT_AT = datetime.now().astimezone().isoformat(timespec="milliseconds") |
|
PENDING_TASKS = 0 |
|
LAG_TASKS = 0 |
|
|
|
mt_lock = threading.Lock() |
|
DONE_TASKS = 0 |
|
FAILED_TASKS = 0 |
|
CURRENT_TASK = None |
|
|
|
|
|
class TaskCanceledException(Exception): |
|
def __init__(self, msg): |
|
self.msg = msg |
|
|
|
|
|
def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."): |
|
global PAYLOAD |
|
if prog is not None and prog < 0: |
|
msg = "[ERROR]" + msg |
|
try: |
|
cancel = TaskService.do_cancel(task_id) |
|
except DoesNotExist: |
|
logging.warning(f"set_progress task {task_id} is unknown") |
|
if PAYLOAD: |
|
PAYLOAD.ack() |
|
PAYLOAD = None |
|
return |
|
|
|
if cancel: |
|
msg += " [Canceled]" |
|
prog = -1 |
|
|
|
if to_page > 0: |
|
if msg: |
|
msg = f"Page({from_page + 1}~{to_page + 1}): " + msg |
|
if msg: |
|
msg = datetime.now().strftime("%H:%M:%S") + " " + msg |
|
d = {"progress_msg": msg} |
|
if prog is not None: |
|
d["progress"] = prog |
|
|
|
logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}") |
|
try: |
|
TaskService.update_progress(task_id, d) |
|
except DoesNotExist: |
|
logging.warning(f"set_progress task {task_id} is unknown") |
|
if PAYLOAD: |
|
PAYLOAD.ack() |
|
PAYLOAD = None |
|
return |
|
|
|
close_connection() |
|
if cancel and PAYLOAD: |
|
PAYLOAD.ack() |
|
PAYLOAD = None |
|
raise TaskCanceledException(msg) |
|
|
|
|
|
def collect(): |
|
global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS |
|
try: |
|
PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker") |
|
if not PAYLOAD: |
|
PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME) |
|
if not PAYLOAD: |
|
time.sleep(1) |
|
return None |
|
except Exception: |
|
logging.exception("Get task event from queue exception") |
|
return None |
|
|
|
msg = PAYLOAD.get_message() |
|
if not msg: |
|
return None |
|
|
|
task = None |
|
canceled = False |
|
try: |
|
task = TaskService.get_task(msg["id"]) |
|
if task: |
|
_, doc = DocumentService.get_by_id(task["doc_id"]) |
|
canceled = doc.run == TaskStatus.CANCEL.value or doc.progress < 0 |
|
except DoesNotExist: |
|
pass |
|
except Exception: |
|
logging.exception("collect get_task exception") |
|
if not task or canceled: |
|
state = "is unknown" if not task else "has been cancelled" |
|
with mt_lock: |
|
DONE_TASKS += 1 |
|
logging.info(f"collect task {msg['id']} {state}") |
|
return None |
|
|
|
if msg.get("type", "") == "raptor": |
|
task["task_type"] = "raptor" |
|
return task |
|
|
|
|
|
def get_storage_binary(bucket, name): |
|
return STORAGE_IMPL.get(bucket, name) |
|
|
|
|
|
def build_chunks(task, progress_callback): |
|
if task["size"] > DOC_MAXIMUM_SIZE: |
|
set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" % |
|
(int(DOC_MAXIMUM_SIZE / 1024 / 1024))) |
|
return [] |
|
|
|
chunker = FACTORY[task["parser_id"].lower()] |
|
try: |
|
st = timer() |
|
bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"]) |
|
binary = get_storage_binary(bucket, name) |
|
logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"])) |
|
except TimeoutError: |
|
progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.") |
|
logging.exception( |
|
"Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"])) |
|
raise |
|
except Exception as e: |
|
if re.search("(No such file|not found)", str(e)): |
|
progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"]) |
|
else: |
|
progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", "")) |
|
logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"])) |
|
raise |
|
|
|
try: |
|
cks = chunker.chunk(task["name"], binary=binary, from_page=task["from_page"], |
|
to_page=task["to_page"], lang=task["language"], callback=progress_callback, |
|
kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"]) |
|
logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"])) |
|
except TaskCanceledException: |
|
raise |
|
except Exception as e: |
|
progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", "")) |
|
logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"])) |
|
raise |
|
|
|
docs = [] |
|
doc = { |
|
"doc_id": task["doc_id"], |
|
"kb_id": str(task["kb_id"]) |
|
} |
|
if task["pagerank"]: |
|
doc[PAGERANK_FLD] = int(task["pagerank"]) |
|
el = 0 |
|
for ck in cks: |
|
d = copy.deepcopy(doc) |
|
d.update(ck) |
|
d["id"] = xxhash.xxh64((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest() |
|
d["create_time"] = str(datetime.now()).replace("T", " ")[:19] |
|
d["create_timestamp_flt"] = datetime.now().timestamp() |
|
if not d.get("image"): |
|
_ = d.pop("image", None) |
|
d["img_id"] = "" |
|
docs.append(d) |
|
continue |
|
|
|
try: |
|
output_buffer = BytesIO() |
|
if isinstance(d["image"], bytes): |
|
output_buffer = BytesIO(d["image"]) |
|
else: |
|
d["image"].save(output_buffer, format='JPEG') |
|
|
|
st = timer() |
|
STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()) |
|
el += timer() - st |
|
except Exception: |
|
logging.exception( |
|
"Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["id"])) |
|
raise |
|
|
|
d["img_id"] = "{}-{}".format(task["kb_id"], d["id"]) |
|
del d["image"] |
|
docs.append(d) |
|
logging.info("MINIO PUT({}):{}".format(task["name"], el)) |
|
|
|
if task["parser_config"].get("auto_keywords", 0): |
|
st = timer() |
|
progress_callback(msg="Start to generate keywords for every chunk ...") |
|
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"]) |
|
for d in docs: |
|
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "keywords", |
|
{"topn": task["parser_config"]["auto_keywords"]}) |
|
if not cached: |
|
cached = keyword_extraction(chat_mdl, d["content_with_weight"], |
|
task["parser_config"]["auto_keywords"]) |
|
if cached: |
|
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "keywords", |
|
{"topn": task["parser_config"]["auto_keywords"]}) |
|
|
|
d["important_kwd"] = cached.split(",") |
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"])) |
|
progress_callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st)) |
|
|
|
if task["parser_config"].get("auto_questions", 0): |
|
st = timer() |
|
progress_callback(msg="Start to generate questions for every chunk ...") |
|
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"]) |
|
for d in docs: |
|
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "question", |
|
{"topn": task["parser_config"]["auto_questions"]}) |
|
if not cached: |
|
cached = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"]) |
|
if cached: |
|
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "question", |
|
{"topn": task["parser_config"]["auto_questions"]}) |
|
|
|
d["question_kwd"] = cached.split("\n") |
|
d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"])) |
|
progress_callback(msg="Question generation completed in {:.2f}s".format(timer() - st)) |
|
|
|
if task["kb_parser_config"].get("tag_kb_ids", []): |
|
progress_callback(msg="Start to tag for every chunk ...") |
|
kb_ids = task["kb_parser_config"]["tag_kb_ids"] |
|
tenant_id = task["tenant_id"] |
|
topn_tags = task["kb_parser_config"].get("topn_tags", 3) |
|
S = 1000 |
|
st = timer() |
|
examples = [] |
|
all_tags = get_tags_from_cache(kb_ids) |
|
if not all_tags: |
|
all_tags = settings.retrievaler.all_tags_in_portion(tenant_id, kb_ids, S) |
|
set_tags_to_cache(kb_ids, all_tags) |
|
else: |
|
all_tags = json.loads(all_tags) |
|
|
|
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"]) |
|
for d in docs: |
|
if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S): |
|
examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]}) |
|
continue |
|
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], all_tags, {"topn": topn_tags}) |
|
if not cached: |
|
cached = content_tagging(chat_mdl, d["content_with_weight"], all_tags, |
|
random.choices(examples, k=2) if len(examples)>2 else examples, |
|
topn=topn_tags) |
|
if cached: |
|
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, all_tags, {"topn": topn_tags}) |
|
d[TAG_FLD] = json.loads(cached) |
|
|
|
progress_callback(msg="Tagging completed in {:.2f}s".format(timer() - st)) |
|
|
|
return docs |
|
|
|
|
|
def init_kb(row, vector_size: int): |
|
idxnm = search.index_name(row["tenant_id"]) |
|
return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size) |
|
|
|
|
|
def embedding(docs, mdl, parser_config=None, callback=None): |
|
if parser_config is None: |
|
parser_config = {} |
|
batch_size = 16 |
|
tts, cnts = [], [] |
|
for d in docs: |
|
tts.append(d.get("docnm_kwd", "Title")) |
|
c = "\n".join(d.get("question_kwd", [])) |
|
if not c: |
|
c = d["content_with_weight"] |
|
c = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c) |
|
if not c: |
|
c = "None" |
|
cnts.append(c) |
|
|
|
tk_count = 0 |
|
if len(tts) == len(cnts): |
|
tts_ = np.array([]) |
|
for i in range(0, len(tts), batch_size): |
|
vts, c = mdl.encode(tts[i: i + batch_size]) |
|
if len(tts_) == 0: |
|
tts_ = vts |
|
else: |
|
tts_ = np.concatenate((tts_, vts), axis=0) |
|
tk_count += c |
|
callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="") |
|
tts = tts_ |
|
|
|
cnts_ = np.array([]) |
|
for i in range(0, len(cnts), batch_size): |
|
vts, c = mdl.encode(cnts[i: i + batch_size]) |
|
if len(cnts_) == 0: |
|
cnts_ = vts |
|
else: |
|
cnts_ = np.concatenate((cnts_, vts), axis=0) |
|
tk_count += c |
|
callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="") |
|
cnts = cnts_ |
|
|
|
title_w = float(parser_config.get("filename_embd_weight", 0.1)) |
|
vects = (title_w * tts + (1 - title_w) * |
|
cnts) if len(tts) == len(cnts) else cnts |
|
|
|
assert len(vects) == len(docs) |
|
vector_size = 0 |
|
for i, d in enumerate(docs): |
|
v = vects[i].tolist() |
|
vector_size = len(v) |
|
d["q_%d_vec" % len(v)] = v |
|
return tk_count, vector_size |
|
|
|
|
|
def run_raptor(row, chat_mdl, embd_mdl, callback=None): |
|
vts, _ = embd_mdl.encode(["ok"]) |
|
vector_size = len(vts[0]) |
|
vctr_nm = "q_%d_vec" % vector_size |
|
chunks = [] |
|
for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])], |
|
fields=["content_with_weight", vctr_nm]): |
|
chunks.append((d["content_with_weight"], np.array(d[vctr_nm]))) |
|
|
|
raptor = Raptor( |
|
row["parser_config"]["raptor"].get("max_cluster", 64), |
|
chat_mdl, |
|
embd_mdl, |
|
row["parser_config"]["raptor"]["prompt"], |
|
row["parser_config"]["raptor"]["max_token"], |
|
row["parser_config"]["raptor"]["threshold"] |
|
) |
|
original_length = len(chunks) |
|
chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback) |
|
doc = { |
|
"doc_id": row["doc_id"], |
|
"kb_id": [str(row["kb_id"])], |
|
"docnm_kwd": row["name"], |
|
"title_tks": rag_tokenizer.tokenize(row["name"]) |
|
} |
|
if row["pagerank"]: |
|
doc[PAGERANK_FLD] = int(row["pagerank"]) |
|
res = [] |
|
tk_count = 0 |
|
for content, vctr in chunks[original_length:]: |
|
d = copy.deepcopy(doc) |
|
d["id"] = xxhash.xxh64((content + str(d["doc_id"])).encode("utf-8")).hexdigest() |
|
d["create_time"] = str(datetime.now()).replace("T", " ")[:19] |
|
d["create_timestamp_flt"] = datetime.now().timestamp() |
|
d[vctr_nm] = vctr.tolist() |
|
d["content_with_weight"] = content |
|
d["content_ltks"] = rag_tokenizer.tokenize(content) |
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) |
|
res.append(d) |
|
tk_count += num_tokens_from_string(content) |
|
return res, tk_count, vector_size |
|
|
|
|
|
def do_handle_task(task): |
|
task_id = task["id"] |
|
task_from_page = task["from_page"] |
|
task_to_page = task["to_page"] |
|
task_tenant_id = task["tenant_id"] |
|
task_embedding_id = task["embd_id"] |
|
task_language = task["language"] |
|
task_llm_id = task["llm_id"] |
|
task_dataset_id = task["kb_id"] |
|
task_doc_id = task["doc_id"] |
|
task_document_name = task["name"] |
|
task_parser_config = task["parser_config"] |
|
|
|
|
|
progress_callback = partial(set_progress, task_id, task_from_page, task_to_page) |
|
|
|
try: |
|
task_canceled = TaskService.do_cancel(task_id) |
|
except DoesNotExist: |
|
logging.warning(f"task {task_id} is unknown") |
|
return |
|
if task_canceled: |
|
progress_callback(-1, msg="Task has been canceled.") |
|
return |
|
|
|
try: |
|
|
|
embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language) |
|
except Exception as e: |
|
error_message = f'Fail to bind embedding model: {str(e)}' |
|
progress_callback(-1, msg=error_message) |
|
logging.exception(error_message) |
|
raise |
|
|
|
|
|
if task.get("task_type", "") == "raptor": |
|
try: |
|
|
|
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language) |
|
|
|
|
|
chunks, token_count, vector_size = run_raptor(task, chat_model, embedding_model, progress_callback) |
|
except TaskCanceledException: |
|
raise |
|
except Exception as e: |
|
error_message = f'Fail to bind LLM used by RAPTOR: {str(e)}' |
|
progress_callback(-1, msg=error_message) |
|
logging.exception(error_message) |
|
raise |
|
else: |
|
|
|
start_ts = timer() |
|
chunks = build_chunks(task, progress_callback) |
|
logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts)) |
|
if chunks is None: |
|
return |
|
if not chunks: |
|
progress_callback(1., msg=f"No chunk built from {task_document_name}") |
|
return |
|
|
|
|
|
progress_callback(msg="Generate {} chunks".format(len(chunks))) |
|
start_ts = timer() |
|
try: |
|
token_count, vector_size = embedding(chunks, embedding_model, task_parser_config, progress_callback) |
|
except Exception as e: |
|
error_message = "Generate embedding error:{}".format(str(e)) |
|
progress_callback(-1, error_message) |
|
logging.exception(error_message) |
|
token_count = 0 |
|
raise |
|
progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts) |
|
logging.info(progress_message) |
|
progress_callback(msg=progress_message) |
|
|
|
|
|
init_kb(task, vector_size) |
|
chunk_count = len(set([chunk["id"] for chunk in chunks])) |
|
start_ts = timer() |
|
doc_store_result = "" |
|
es_bulk_size = 4 |
|
for b in range(0, len(chunks), es_bulk_size): |
|
doc_store_result = settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(task_tenant_id), |
|
task_dataset_id) |
|
if b % 128 == 0: |
|
progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="") |
|
if doc_store_result: |
|
error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!" |
|
progress_callback(-1, msg=error_message) |
|
raise Exception(error_message) |
|
chunk_ids = [chunk["id"] for chunk in chunks[:b + es_bulk_size]] |
|
chunk_ids_str = " ".join(chunk_ids) |
|
try: |
|
TaskService.update_chunk_ids(task["id"], chunk_ids_str) |
|
except DoesNotExist: |
|
logging.warning(f"do_handle_task update_chunk_ids failed since task {task['id']} is unknown.") |
|
doc_store_result = settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id), |
|
task_dataset_id) |
|
return |
|
logging.info("Indexing doc({}), page({}-{}), chunks({}), elapsed: {:.2f}".format(task_document_name, task_from_page, |
|
task_to_page, len(chunks), |
|
timer() - start_ts)) |
|
|
|
DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0) |
|
|
|
time_cost = timer() - start_ts |
|
progress_callback(prog=1.0, msg="Done ({:.2f}s)".format(time_cost)) |
|
logging.info( |
|
"Chunk doc({}), page({}-{}), chunks({}), token({}), elapsed:{:.2f}".format(task_document_name, task_from_page, |
|
task_to_page, len(chunks), |
|
token_count, time_cost)) |
|
|
|
|
|
def handle_task(): |
|
global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK |
|
task = collect() |
|
if task: |
|
try: |
|
logging.info(f"handle_task begin for task {json.dumps(task)}") |
|
with mt_lock: |
|
CURRENT_TASK = copy.deepcopy(task) |
|
do_handle_task(task) |
|
with mt_lock: |
|
DONE_TASKS += 1 |
|
CURRENT_TASK = None |
|
logging.info(f"handle_task done for task {json.dumps(task)}") |
|
except TaskCanceledException: |
|
with mt_lock: |
|
DONE_TASKS += 1 |
|
CURRENT_TASK = None |
|
try: |
|
set_progress(task["id"], prog=-1, msg="handle_task got TaskCanceledException") |
|
except Exception: |
|
pass |
|
logging.debug("handle_task got TaskCanceledException", exc_info=True) |
|
except Exception as e: |
|
with mt_lock: |
|
FAILED_TASKS += 1 |
|
CURRENT_TASK = None |
|
try: |
|
set_progress(task["id"], prog=-1, msg=f"[Exception]: {e}") |
|
except Exception: |
|
pass |
|
logging.exception(f"handle_task got exception for task {json.dumps(task)}") |
|
if PAYLOAD: |
|
PAYLOAD.ack() |
|
PAYLOAD = None |
|
|
|
|
|
def report_status(): |
|
global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK |
|
REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME) |
|
while True: |
|
try: |
|
now = datetime.now() |
|
group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker") |
|
if group_info is not None: |
|
PENDING_TASKS = int(group_info.get("pending", 0)) |
|
LAG_TASKS = int(group_info.get("lag", 0)) |
|
|
|
with mt_lock: |
|
heartbeat = json.dumps({ |
|
"name": CONSUMER_NAME, |
|
"now": now.astimezone().isoformat(timespec="milliseconds"), |
|
"boot_at": BOOT_AT, |
|
"pending": PENDING_TASKS, |
|
"lag": LAG_TASKS, |
|
"done": DONE_TASKS, |
|
"failed": FAILED_TASKS, |
|
"current": CURRENT_TASK, |
|
}) |
|
REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp()) |
|
logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}") |
|
|
|
expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30) |
|
if expired > 0: |
|
REDIS_CONN.zpopmin(CONSUMER_NAME, expired) |
|
except Exception: |
|
logging.exception("report_status got exception") |
|
time.sleep(30) |
|
|
|
|
|
def analyze_heap(snapshot1: tracemalloc.Snapshot, snapshot2: tracemalloc.Snapshot, snapshot_id: int, dump_full: bool): |
|
msg = "" |
|
if dump_full: |
|
stats2 = snapshot2.statistics('lineno') |
|
msg += f"{CONSUMER_NAME} memory usage of snapshot {snapshot_id}:\n" |
|
for stat in stats2[:10]: |
|
msg += f"{stat}\n" |
|
stats1_vs_2 = snapshot2.compare_to(snapshot1, 'lineno') |
|
msg += f"{CONSUMER_NAME} memory usage increase from snapshot {snapshot_id - 1} to snapshot {snapshot_id}:\n" |
|
for stat in stats1_vs_2[:10]: |
|
msg += f"{stat}\n" |
|
msg += f"{CONSUMER_NAME} detailed traceback for the top memory consumers:\n" |
|
for stat in stats1_vs_2[:3]: |
|
msg += '\n'.join(stat.traceback.format()) |
|
logging.info(msg) |
|
|
|
|
|
def main(): |
|
logging.info(r""" |
|
______ __ ______ __ |
|
/_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____ |
|
/ / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/ |
|
/ / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / / |
|
/_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/ |
|
""") |
|
logging.info(f'TaskExecutor: RAGFlow version: {get_ragflow_version()}') |
|
settings.init_settings() |
|
print_rag_settings() |
|
background_thread = threading.Thread(target=report_status) |
|
background_thread.daemon = True |
|
background_thread.start() |
|
|
|
TRACE_MALLOC_DELTA = int(os.environ.get('TRACE_MALLOC_DELTA', "0")) |
|
TRACE_MALLOC_FULL = int(os.environ.get('TRACE_MALLOC_FULL', "0")) |
|
if TRACE_MALLOC_DELTA > 0: |
|
if TRACE_MALLOC_FULL < TRACE_MALLOC_DELTA: |
|
TRACE_MALLOC_FULL = TRACE_MALLOC_DELTA |
|
tracemalloc.start() |
|
snapshot1 = tracemalloc.take_snapshot() |
|
while True: |
|
handle_task() |
|
num_tasks = DONE_TASKS + FAILED_TASKS |
|
if TRACE_MALLOC_DELTA > 0 and num_tasks > 0 and num_tasks % TRACE_MALLOC_DELTA == 0: |
|
snapshot2 = tracemalloc.take_snapshot() |
|
analyze_heap(snapshot1, snapshot2, int(num_tasks / TRACE_MALLOC_DELTA), num_tasks % TRACE_MALLOC_FULL == 0) |
|
snapshot1 = snapshot2 |
|
snapshot2 = None |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|