|
|
|
import os, json,re,copy |
|
import pandas as pd |
|
current_file_path = os.path.dirname(os.path.abspath(__file__)) |
|
TBL = pd.read_csv(os.path.join(current_file_path, "res/schools.csv"), sep="\t", header=0).fillna("") |
|
TBL["name_en"] = TBL["name_en"].map(lambda x: x.lower().strip()) |
|
GOOD_SCH = json.load(open(os.path.join(current_file_path, "res/good_sch.json"), "r")) |
|
GOOD_SCH = set([re.sub(r"[,. &()()]+", "", c) for c in GOOD_SCH]) |
|
|
|
|
|
def loadRank(fnm): |
|
global TBL |
|
TBL["rank"] = 1000000 |
|
with open(fnm, "r",encoding='UTF-8') as f: |
|
while True: |
|
l = f.readline() |
|
if not l:break |
|
l = l.strip("\n").split(",") |
|
try: |
|
nm,rk = l[0].strip(),int(l[1]) |
|
|
|
TBL.loc[((TBL.name_cn == nm) | (TBL.name_en == nm)), "rank"] = rk |
|
except Exception as e: |
|
pass |
|
|
|
|
|
loadRank(os.path.join(current_file_path, "res/school.rank.csv")) |
|
|
|
|
|
def split(txt): |
|
tks = [] |
|
for t in re.sub(r"[ \t]+", " ",txt).split(" "): |
|
if tks and re.match(r".*[a-zA-Z]$", tks[-1]) and \ |
|
re.match(r"[a-zA-Z]", t) and tks: |
|
tks[-1] = tks[-1] + " " + t |
|
else:tks.append(t) |
|
return tks |
|
|
|
|
|
def select(nm): |
|
global TBL |
|
if not nm:return |
|
if isinstance(nm, list):nm = str(nm[0]) |
|
nm = split(nm)[0] |
|
nm = str(nm).lower().strip() |
|
nm = re.sub(r"[((][^()()]+[))]", "", nm.lower()) |
|
nm = re.sub(r"(^the |[,.&()();;·]+|^(英国|美国|瑞士))", "", nm) |
|
nm = re.sub(r"大学.*学院", "大学", nm) |
|
tbl = copy.deepcopy(TBL) |
|
tbl["hit_alias"] = tbl["alias"].map(lambda x:nm in set(x.split("+"))) |
|
res = tbl[((tbl.name_cn == nm) | (tbl.name_en == nm) | (tbl.hit_alias == True))] |
|
if res.empty:return |
|
|
|
return json.loads(res.to_json(orient="records"))[0] |
|
|
|
|
|
def is_good(nm): |
|
global GOOD_SCH |
|
nm = re.sub(r"[((][^()()]+[))]", "", nm.lower()) |
|
nm = re.sub(r"[''`‘’“”,. &()();;]+", "", nm) |
|
return nm in GOOD_SCH |
|
|
|
|