|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import base64
|
|
import datetime
|
|
import json
|
|
import re
|
|
|
|
import pandas as pd
|
|
import requests
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from rag.nlp import rag_tokenizer
|
|
from deepdoc.parser.resume import refactor
|
|
from deepdoc.parser.resume import step_one, step_two
|
|
from rag.settings import cron_logger
|
|
from rag.utils import rmSpace
|
|
|
|
forbidden_select_fields4resume = [
|
|
"name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd"
|
|
]
|
|
|
|
|
|
def remote_call(filename, binary):
|
|
q = {
|
|
"header": {
|
|
"uid": 1,
|
|
"user": "kevinhu",
|
|
"log_id": filename
|
|
},
|
|
"request": {
|
|
"p": {
|
|
"request_id": "1",
|
|
"encrypt_type": "base64",
|
|
"filename": filename,
|
|
"langtype": '',
|
|
"fileori": base64.b64encode(binary).decode('utf-8')
|
|
},
|
|
"c": "resume_parse_module",
|
|
"m": "resume_parse"
|
|
}
|
|
}
|
|
for _ in range(3):
|
|
try:
|
|
resume = requests.post(
|
|
"http://127.0.0.1:61670/tog",
|
|
data=json.dumps(q))
|
|
resume = resume.json()["response"]["results"]
|
|
resume = refactor(resume)
|
|
for k in ["education", "work", "project",
|
|
"training", "skill", "certificate", "language"]:
|
|
if not resume.get(k) and k in resume:
|
|
del resume[k]
|
|
|
|
resume = step_one.refactor(pd.DataFrame([{"resume_content": json.dumps(resume), "tob_resume_id": "x",
|
|
"updated_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]))
|
|
resume = step_two.parse(resume)
|
|
return resume
|
|
except Exception as e:
|
|
cron_logger.error("Resume parser error: " + str(e))
|
|
return {}
|
|
|
|
|
|
def chunk(filename, binary=None, callback=None, **kwargs):
|
|
"""
|
|
The supported file formats are pdf, docx and txt.
|
|
To maximize the effectiveness, parse the resume correctly, please concat us: https://github.com/infiniflow/ragflow
|
|
"""
|
|
if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE):
|
|
raise NotImplementedError("file type not supported yet(pdf supported)")
|
|
|
|
if not binary:
|
|
with open(filename, "rb") as f:
|
|
binary = f.read()
|
|
|
|
callback(0.2, "Resume parsing is going on...")
|
|
resume = remote_call(filename, binary)
|
|
if len(resume.keys()) < 7:
|
|
callback(-1, "Resume is not successfully parsed.")
|
|
raise Exception("Resume parser remote call fail!")
|
|
callback(0.6, "Done parsing. Chunking...")
|
|
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
|
|
|
field_map = {
|
|
"name_kwd": "姓名/名字",
|
|
"name_pinyin_kwd": "姓名拼音/名字拼音",
|
|
"gender_kwd": "性别(男,女)",
|
|
"age_int": "年龄/岁/年纪",
|
|
"phone_kwd": "电话/手机/微信",
|
|
"email_tks": "email/e-mail/邮箱",
|
|
"position_name_tks": "职位/职能/岗位/职责",
|
|
"expect_city_names_tks": "期望城市",
|
|
"work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
|
|
"corporation_name_tks": "最近就职(上班)的公司/上一家公司",
|
|
|
|
"first_school_name_tks": "第一学历毕业学校",
|
|
"first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
|
"highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
|
"first_major_tks": "第一学历专业",
|
|
"edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
|
|
|
"degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
|
"major_tks": "学过的专业/过往专业",
|
|
"school_name_tks": "学校/毕业院校",
|
|
"sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
|
|
"edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
|
|
|
"corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
|
|
"edu_end_int": "毕业年份",
|
|
"industry_name_tks": "所在行业",
|
|
|
|
"birth_dt": "生日/出生年份",
|
|
"expect_position_name_tks": "期望职位/期望职能/期望岗位",
|
|
}
|
|
|
|
titles = []
|
|
for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
|
|
v = resume.get(n, "")
|
|
if isinstance(v, list):
|
|
v = v[0]
|
|
if n.find("tks") > 0:
|
|
v = rmSpace(v)
|
|
titles.append(str(v))
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": rag_tokenizer.tokenize("-".join(titles) + "-简历")
|
|
}
|
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
|
pairs = []
|
|
for n, m in field_map.items():
|
|
if not resume.get(n):
|
|
continue
|
|
v = resume[n]
|
|
if isinstance(v, list):
|
|
v = " ".join(v)
|
|
if n.find("tks") > 0:
|
|
v = rmSpace(v)
|
|
pairs.append((m, str(v)))
|
|
|
|
doc["content_with_weight"] = "\n".join(
|
|
["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs])
|
|
doc["content_ltks"] = rag_tokenizer.tokenize(doc["content_with_weight"])
|
|
doc["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(doc["content_ltks"])
|
|
for n, _ in field_map.items():
|
|
if n not in resume:
|
|
continue
|
|
if isinstance(resume[n], list) and (
|
|
len(resume[n]) == 1 or n not in forbidden_select_fields4resume):
|
|
resume[n] = resume[n][0]
|
|
if n.find("_tks") > 0:
|
|
resume[n] = rag_tokenizer.fine_grained_tokenize(resume[n])
|
|
doc[n] = resume[n]
|
|
|
|
print(doc)
|
|
KnowledgebaseService.update_parser_config(
|
|
kwargs["kb_id"], {"field_map": field_map})
|
|
return [doc]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(a, b):
|
|
pass
|
|
chunk(sys.argv[1], callback=dummy)
|
|
|