|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
from functools import partial |
|
|
|
import pandas as pd |
|
|
|
from api.db import LLMType |
|
from api.db.services.llm_service import LLMBundle |
|
from api.settings import retrievaler |
|
from graph.component.base import ComponentBase, ComponentParamBase |
|
|
|
|
|
class GenerateParam(ComponentParamBase): |
|
""" |
|
Define the Generate component parameters. |
|
""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.llm_id = "" |
|
self.prompt = "" |
|
self.max_tokens = 0 |
|
self.temperature = 0 |
|
self.top_p = 0 |
|
self.presence_penalty = 0 |
|
self.frequency_penalty = 0 |
|
self.cite = True |
|
self.parameters = [] |
|
|
|
def check(self): |
|
self.check_decimal_float(self.temperature, "[Generate] Temperature") |
|
self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty") |
|
self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty") |
|
self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens") |
|
self.check_decimal_float(self.top_p, "[Generate] Top P") |
|
self.check_empty(self.llm_id, "[Generate] LLM") |
|
|
|
|
|
def gen_conf(self): |
|
conf = {} |
|
if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens |
|
if self.temperature > 0: conf["temperature"] = self.temperature |
|
if self.top_p > 0: conf["top_p"] = self.top_p |
|
if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty |
|
if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty |
|
return conf |
|
|
|
|
|
class Generate(ComponentBase): |
|
component_name = "Generate" |
|
|
|
def _run(self, history, **kwargs): |
|
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id) |
|
prompt = self._param.prompt |
|
|
|
retrieval_res = self.get_input() |
|
input = "\n- ".join(retrieval_res["content"]) |
|
for para in self._param.parameters: |
|
cpn = self._canvas.get_component(para["component_id"])["obj"] |
|
_, out = cpn.output(allow_partial=False) |
|
kwargs[para["key"]] = "\n - ".join(out["content"]) |
|
|
|
kwargs["input"] = input |
|
for n, v in kwargs.items(): |
|
|
|
prompt = re.sub(r"\{%s\}" % n, str(v), prompt) |
|
|
|
if kwargs.get("stream"): |
|
return partial(self.stream_output, chat_mdl, prompt, retrieval_res) |
|
|
|
if "empty_response" in retrieval_res.columns: |
|
return Generate.be_output(input) |
|
|
|
ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size), |
|
self._param.gen_conf()) |
|
|
|
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns: |
|
ans, idx = retrievaler.insert_citations(ans, |
|
[ck["content_ltks"] |
|
for _, ck in retrieval_res.iterrows()], |
|
[ck["vector"] |
|
for _, ck in retrieval_res.iterrows()], |
|
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, |
|
self._canvas.get_embedding_model()), |
|
tkweight=0.7, |
|
vtweight=0.3) |
|
del retrieval_res["vector"] |
|
retrieval_res = retrieval_res.to_dict("records") |
|
df = [] |
|
for i in idx: |
|
df.append(retrieval_res[int(i)]) |
|
r = re.search(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), ans) |
|
assert r, f"{i} => {ans}" |
|
df[-1]["content"] = r.group(1) |
|
ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans) |
|
if ans: df.append({"content": ans}) |
|
return pd.DataFrame(df) |
|
|
|
return Generate.be_output(ans) |
|
|
|
def stream_output(self, chat_mdl, prompt, retrieval_res): |
|
res = None |
|
if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]): |
|
res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []} |
|
yield res |
|
self.set_output(res) |
|
return |
|
|
|
answer = "" |
|
for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size), |
|
self._param.gen_conf()): |
|
res = {"content": ans, "reference": []} |
|
answer = ans |
|
yield res |
|
|
|
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns: |
|
answer, idx = retrievaler.insert_citations(answer, |
|
[ck["content_ltks"] |
|
for _, ck in retrieval_res.iterrows()], |
|
[ck["vector"] |
|
for _, ck in retrieval_res.iterrows()], |
|
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, |
|
self._canvas.get_embedding_model()), |
|
tkweight=0.7, |
|
vtweight=0.3) |
|
doc_ids = set([]) |
|
recall_docs = [] |
|
for i in idx: |
|
did = retrieval_res.loc[int(i), "doc_id"] |
|
if did in doc_ids: continue |
|
doc_ids.add(did) |
|
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]}) |
|
|
|
del retrieval_res["vector"] |
|
del retrieval_res["content_ltks"] |
|
|
|
reference = { |
|
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()], |
|
"doc_aggs": recall_docs |
|
} |
|
|
|
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: |
|
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" |
|
res = {"content": answer, "reference": reference} |
|
yield res |
|
|
|
self.set_output(res) |
|
|