|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse
|
|
import pickle
|
|
import random
|
|
import time
|
|
from copy import deepcopy
|
|
from multiprocessing.connection import Listener
|
|
from threading import Thread
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
|
|
|
|
|
def torch_gc():
|
|
try:
|
|
import torch
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
elif torch.backends.mps.is_available():
|
|
try:
|
|
from torch.mps import empty_cache
|
|
empty_cache()
|
|
except Exception as e:
|
|
pass
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
class RPCHandler:
|
|
def __init__(self):
|
|
self._functions = {}
|
|
|
|
def register_function(self, func):
|
|
self._functions[func.__name__] = func
|
|
|
|
def handle_connection(self, connection):
|
|
try:
|
|
while True:
|
|
|
|
func_name, args, kwargs = pickle.loads(connection.recv())
|
|
|
|
try:
|
|
r = self._functions[func_name](*args, **kwargs)
|
|
connection.send(pickle.dumps(r))
|
|
except Exception as e:
|
|
connection.send(pickle.dumps(e))
|
|
except EOFError:
|
|
pass
|
|
|
|
|
|
def rpc_server(hdlr, address, authkey):
|
|
sock = Listener(address, authkey=authkey)
|
|
while True:
|
|
try:
|
|
client = sock.accept()
|
|
t = Thread(target=hdlr.handle_connection, args=(client,))
|
|
t.daemon = True
|
|
t.start()
|
|
except Exception as e:
|
|
print("【EXCEPTION】:", str(e))
|
|
|
|
|
|
models = []
|
|
tokenizer = None
|
|
|
|
|
|
def chat(messages, gen_conf):
|
|
global tokenizer
|
|
model = Model()
|
|
try:
|
|
torch_gc()
|
|
conf = {
|
|
"max_new_tokens": int(
|
|
gen_conf.get(
|
|
"max_tokens", 256)), "temperature": float(
|
|
gen_conf.get(
|
|
"temperature", 0.1))}
|
|
print(messages, conf)
|
|
text = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
|
|
generated_ids = model.generate(
|
|
model_inputs.input_ids,
|
|
**conf
|
|
)
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
]
|
|
|
|
return tokenizer.batch_decode(
|
|
generated_ids, skip_special_tokens=True)[0]
|
|
except Exception as e:
|
|
return str(e)
|
|
|
|
|
|
def chat_streamly(messages, gen_conf):
|
|
global tokenizer
|
|
model = Model()
|
|
try:
|
|
torch_gc()
|
|
conf = deepcopy(gen_conf)
|
|
print(messages, conf)
|
|
text = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
streamer = TextStreamer(tokenizer)
|
|
conf["inputs"] = model_inputs.input_ids
|
|
conf["streamer"] = streamer
|
|
conf["max_new_tokens"] = conf["max_tokens"]
|
|
del conf["max_tokens"]
|
|
thread = Thread(target=model.generate, kwargs=conf)
|
|
thread.start()
|
|
for _, new_text in enumerate(streamer):
|
|
yield new_text
|
|
except Exception as e:
|
|
yield "**ERROR**: " + str(e)
|
|
|
|
|
|
def Model():
|
|
global models
|
|
random.seed(time.time())
|
|
return random.choice(models)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_name", type=str, help="Model name")
|
|
parser.add_argument(
|
|
"--port",
|
|
default=7860,
|
|
type=int,
|
|
help="RPC serving port")
|
|
args = parser.parse_args()
|
|
|
|
handler = RPCHandler()
|
|
handler.register_function(chat)
|
|
handler.register_function(chat_streamly)
|
|
|
|
models = []
|
|
for _ in range(1):
|
|
m = AutoModelForCausalLM.from_pretrained(args.model_name,
|
|
device_map="auto",
|
|
torch_dtype='auto')
|
|
models.append(m)
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
|
|
|
|
|
rpc_server(handler, ('0.0.0.0', args.port),
|
|
authkey=b'infiniflow-token4kevinhu')
|
|
|