|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json
|
|
import os
|
|
from collections import defaultdict
|
|
from api.db import LLMType
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.settings import retrievaler
|
|
from api.utils import get_uuid
|
|
from rag.nlp import tokenize, search
|
|
from rag.utils.es_conn import ELASTICSEARCH
|
|
from ranx import evaluate
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
|
|
|
|
class Benchmark:
|
|
def __init__(self, kb_id):
|
|
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
|
self.similarity_threshold = kb.similarity_threshold
|
|
self.vector_similarity_weight = kb.vector_similarity_weight
|
|
self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
|
|
|
|
def _get_benchmarks(self, query, dataset_idxnm, count=16):
|
|
req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
|
|
sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
|
|
return sres
|
|
|
|
def _get_retrieval(self, qrels, dataset_idxnm):
|
|
run = defaultdict(dict)
|
|
query_list = list(qrels.keys())
|
|
for query in query_list:
|
|
sres = self._get_benchmarks(query, dataset_idxnm)
|
|
sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
|
|
self.vector_similarity_weight)
|
|
for index, id in enumerate(sres.ids):
|
|
run[query][id] = sim[index]
|
|
return run
|
|
|
|
def embedding(self, docs, batch_size=16):
|
|
vects = []
|
|
cnts = [d["content_with_weight"] for d in docs]
|
|
for i in range(0, len(cnts), batch_size):
|
|
vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
|
|
vects.extend(vts.tolist())
|
|
assert len(docs) == len(vects)
|
|
for i, d in enumerate(docs):
|
|
v = vects[i]
|
|
d["q_%d_vec" % len(v)] = v
|
|
return docs
|
|
|
|
def ms_marco_index(self, file_path, index_name):
|
|
qrels = defaultdict(dict)
|
|
texts = defaultdict(dict)
|
|
docs = []
|
|
filelist = os.listdir(file_path)
|
|
for dir in filelist:
|
|
data = pd.read_parquet(os.path.join(file_path, dir))
|
|
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
|
|
|
|
query = data.iloc[i]['query']
|
|
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
|
|
d = {
|
|
"id": get_uuid()
|
|
}
|
|
tokenize(d, text, "english")
|
|
docs.append(d)
|
|
texts[d["id"]] = text
|
|
qrels[query][d["id"]] = int(rel)
|
|
if len(docs) >= 32:
|
|
docs = self.embedding(docs)
|
|
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
|
docs = []
|
|
|
|
docs = self.embedding(docs)
|
|
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
|
return qrels, texts
|
|
|
|
def trivia_qa_index(self, file_path, index_name):
|
|
qrels = defaultdict(dict)
|
|
texts = defaultdict(dict)
|
|
docs = []
|
|
filelist = os.listdir(file_path)
|
|
for dir in filelist:
|
|
data = pd.read_parquet(os.path.join(file_path, dir))
|
|
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
|
|
query = data.iloc[i]['question']
|
|
for rel, text in zip(data.iloc[i]["search_results"]['rank'],
|
|
data.iloc[i]["search_results"]['search_context']):
|
|
d = {
|
|
"id": get_uuid()
|
|
}
|
|
tokenize(d, text, "english")
|
|
docs.append(d)
|
|
texts[d["id"]] = text
|
|
qrels[query][d["id"]] = int(rel)
|
|
if len(docs) >= 32:
|
|
docs = self.embedding(docs)
|
|
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
|
docs = []
|
|
|
|
docs = self.embedding(docs)
|
|
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
|
return qrels, texts
|
|
|
|
def miracl_index(self, file_path, corpus_path, index_name):
|
|
|
|
corpus_total = {}
|
|
for corpus_file in os.listdir(corpus_path):
|
|
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
|
|
for index, i in tmp_data.iterrows():
|
|
corpus_total[i['docid']] = i['text']
|
|
|
|
topics_total = {}
|
|
for topics_file in os.listdir(os.path.join(file_path, 'topics')):
|
|
if 'test' in topics_file:
|
|
continue
|
|
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
|
|
for index, i in tmp_data.iterrows():
|
|
topics_total[i['qid']] = i['query']
|
|
|
|
qrels = defaultdict(dict)
|
|
texts = defaultdict(dict)
|
|
docs = []
|
|
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
|
|
if 'test' in qrels_file:
|
|
continue
|
|
|
|
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
|
|
names=['qid', 'Q0', 'docid', 'relevance'])
|
|
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
|
|
query = topics_total[tmp_data.iloc[i]['qid']]
|
|
text = corpus_total[tmp_data.iloc[i]['docid']]
|
|
rel = tmp_data.iloc[i]['relevance']
|
|
d = {
|
|
"id": get_uuid()
|
|
}
|
|
tokenize(d, text, 'english')
|
|
docs.append(d)
|
|
texts[d["id"]] = text
|
|
qrels[query][d["id"]] = int(rel)
|
|
if len(docs) >= 32:
|
|
docs = self.embedding(docs)
|
|
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
|
docs = []
|
|
|
|
docs = self.embedding(docs)
|
|
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
|
|
|
return qrels, texts
|
|
|
|
def save_results(self, qrels, run, texts, dataset, file_path):
|
|
keep_result = []
|
|
run_keys = list(run.keys())
|
|
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
|
|
key = run_keys[run_i]
|
|
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
|
|
'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
|
|
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
|
|
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
|
|
f.write('## Score For Every Query\n')
|
|
for keep_result_i in keep_result:
|
|
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
|
|
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
|
|
scores = sorted(scores, key=lambda kk: kk[1])
|
|
for score in scores[:10]:
|
|
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
|
|
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
|
|
|
|
def __call__(self, dataset, file_path, miracl_corpus=''):
|
|
if dataset == "ms_marco_v1.1":
|
|
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
|
|
run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
|
|
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
|
|
self.save_results(qrels, run, texts, dataset, file_path)
|
|
if dataset == "trivia_qa":
|
|
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
|
|
run = self._get_retrieval(qrels, "benchmark_trivia_qa")
|
|
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
|
|
self.save_results(qrels, run, texts, dataset, file_path)
|
|
if dataset == "miracl":
|
|
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
|
|
'yo', 'zh']:
|
|
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
|
|
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
|
|
continue
|
|
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
|
|
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
|
|
continue
|
|
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
|
|
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
|
|
continue
|
|
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
|
|
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
|
|
continue
|
|
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
|
|
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
|
|
"benchmark_miracl_" + lang)
|
|
run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
|
|
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
|
|
self.save_results(qrels, run, texts, dataset, file_path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print('*****************RAGFlow Benchmark*****************')
|
|
kb_id = input('Please input kb_id:\n')
|
|
ex = Benchmark(kb_id)
|
|
dataset = input(
|
|
'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
|
|
if dataset in ['ms_marco_v1.1', 'trivia_qa']:
|
|
if dataset == "ms_marco_v1.1":
|
|
print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
|
|
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
|
|
ex(dataset, dataset_path)
|
|
elif dataset == 'miracl':
|
|
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
|
|
corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
|
|
ex(dataset, dataset_path, miracl_corpus=corpus_path)
|
|
else:
|
|
print("Dataset: ", dataset, "not supported!")
|
|
|