|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from openai.lib.azure import AzureOpenAI |
|
from zhipuai import ZhipuAI |
|
import io |
|
from abc import ABC |
|
from ollama import Client |
|
from openai import OpenAI |
|
import os |
|
import json |
|
from rag.utils import num_tokens_from_string |
|
|
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
def transcription(self, audio, **kwargs): |
|
transcription = self.client.audio.transcriptions.create( |
|
model=self.model_name, |
|
file=audio, |
|
response_format="text" |
|
) |
|
return transcription.text.strip(), num_tokens_from_string(transcription.text.strip()) |
|
|
|
|
|
class GPTSeq2txt(Base): |
|
def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"): |
|
if not base_url: base_url = "https://api.openai.com/v1" |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
|
|
|
|
class QWenSeq2txt(Base): |
|
def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs): |
|
import dashscope |
|
dashscope.api_key = key |
|
self.model_name = model_name |
|
|
|
def transcription(self, audio, format): |
|
from http import HTTPStatus |
|
from dashscope.audio.asr import Recognition |
|
|
|
recognition = Recognition(model=self.model_name, |
|
format=format, |
|
sample_rate=16000, |
|
callback=None) |
|
result = recognition.call(audio) |
|
|
|
ans = "" |
|
if result.status_code == HTTPStatus.OK: |
|
for sentence in result.get_sentence(): |
|
ans += str(sentence + '\n') |
|
return ans, num_tokens_from_string(ans) |
|
|
|
return "**ERROR**: " + result.message, 0 |
|
|
|
|
|
class OllamaSeq2txt(Base): |
|
def __init__(self, key, model_name, lang="Chinese", **kwargs): |
|
self.client = Client(host=kwargs["base_url"]) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
|
|
class AzureSeq2txt(Base): |
|
def __init__(self, key, model_name, lang="Chinese", **kwargs): |
|
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01") |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
|
|
class XinferenceSeq2txt(Base): |
|
def __init__(self, key, model_name="", base_url=""): |
|
self.client = OpenAI(api_key="xxx", base_url=base_url) |
|
self.model_name = model_name |
|
|