|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from deepdoc.vision.seeit import draw_box
|
|
from deepdoc.vision import Recognizer, LayoutRecognizer, TableStructureRecognizer, OCR, init_in_out
|
|
from api.utils.file_utils import get_project_base_directory
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import re
|
|
|
|
import numpy as np
|
|
|
|
sys.path.insert(
|
|
0,
|
|
os.path.abspath(
|
|
os.path.join(
|
|
os.path.dirname(
|
|
os.path.abspath(__file__)),
|
|
'../../')))
|
|
|
|
|
|
def main(args):
|
|
images, outputs = init_in_out(args)
|
|
if args.mode.lower() == "layout":
|
|
labels = LayoutRecognizer.labels
|
|
detr = Recognizer(
|
|
labels,
|
|
"layout",
|
|
os.path.join(
|
|
get_project_base_directory(),
|
|
"rag/res/deepdoc/"))
|
|
if args.mode.lower() == "tsr":
|
|
labels = TableStructureRecognizer.labels
|
|
detr = TableStructureRecognizer()
|
|
ocr = OCR()
|
|
|
|
layouts = detr(images, float(args.threshold))
|
|
for i, lyt in enumerate(layouts):
|
|
if args.mode.lower() == "tsr":
|
|
|
|
html = get_table_html(images[i], lyt, ocr)
|
|
with open(outputs[i] + ".html", "w+") as f:
|
|
f.write(html)
|
|
lyt = [{
|
|
"type": t["label"],
|
|
"bbox": [t["x0"], t["top"], t["x1"], t["bottom"]],
|
|
"score": t["score"]
|
|
} for t in lyt]
|
|
img = draw_box(images[i], lyt, labels, float(args.threshold))
|
|
img.save(outputs[i], quality=95)
|
|
print("save result to: " + outputs[i])
|
|
|
|
|
|
def get_table_html(img, tb_cpns, ocr):
|
|
boxes = ocr(np.array(img))
|
|
boxes = Recognizer.sort_Y_firstly(
|
|
[{"x0": b[0][0], "x1": b[1][0],
|
|
"top": b[0][1], "text": t[0],
|
|
"bottom": b[-1][1],
|
|
"layout_type": "table",
|
|
"page_number": 0} for b, t in boxes if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
|
|
np.mean([b[-1][1] - b[0][1] for b, _ in boxes]) / 3
|
|
)
|
|
|
|
def gather(kwd, fzy=10, ption=0.6):
|
|
nonlocal boxes
|
|
eles = Recognizer.sort_Y_firstly(
|
|
[r for r in tb_cpns if re.match(kwd, r["label"])], fzy)
|
|
eles = Recognizer.layouts_cleanup(boxes, eles, 5, ption)
|
|
return Recognizer.sort_Y_firstly(eles, 0)
|
|
|
|
headers = gather(r".*header$")
|
|
rows = gather(r".* (row|header)")
|
|
spans = gather(r".*spanning")
|
|
clmns = sorted([r for r in tb_cpns if re.match(
|
|
r"table column$", r["label"])], key=lambda x: x["x0"])
|
|
clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)
|
|
|
|
for b in boxes:
|
|
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
|
|
if ii is not None:
|
|
b["R"] = ii
|
|
b["R_top"] = rows[ii]["top"]
|
|
b["R_bott"] = rows[ii]["bottom"]
|
|
|
|
ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
|
|
if ii is not None:
|
|
b["H_top"] = headers[ii]["top"]
|
|
b["H_bott"] = headers[ii]["bottom"]
|
|
b["H_left"] = headers[ii]["x0"]
|
|
b["H_right"] = headers[ii]["x1"]
|
|
b["H"] = ii
|
|
|
|
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
|
|
if ii is not None:
|
|
b["C"] = ii
|
|
b["C_left"] = clmns[ii]["x0"]
|
|
b["C_right"] = clmns[ii]["x1"]
|
|
|
|
ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
|
|
if ii is not None:
|
|
b["H_top"] = spans[ii]["top"]
|
|
b["H_bott"] = spans[ii]["bottom"]
|
|
b["H_left"] = spans[ii]["x0"]
|
|
b["H_right"] = spans[ii]["x1"]
|
|
b["SP"] = ii
|
|
|
|
html = """
|
|
<html>
|
|
<head>
|
|
<style>
|
|
._table_1nkzy_11 {
|
|
margin: auto;
|
|
width: 70%%;
|
|
padding: 10px;
|
|
}
|
|
._table_1nkzy_11 p {
|
|
margin-bottom: 50px;
|
|
border: 1px solid #e1e1e1;
|
|
}
|
|
|
|
caption {
|
|
color: #6ac1ca;
|
|
font-size: 20px;
|
|
height: 50px;
|
|
line-height: 50px;
|
|
font-weight: 600;
|
|
margin-bottom: 10px;
|
|
}
|
|
|
|
._table_1nkzy_11 table {
|
|
width: 100%%;
|
|
border-collapse: collapse;
|
|
}
|
|
|
|
th {
|
|
color: #fff;
|
|
background-color: #6ac1ca;
|
|
}
|
|
|
|
td:hover {
|
|
background: #c1e8e8;
|
|
}
|
|
|
|
tr:nth-child(even) {
|
|
background-color: #f2f2f2;
|
|
}
|
|
|
|
._table_1nkzy_11 th,
|
|
._table_1nkzy_11 td {
|
|
text-align: center;
|
|
border: 1px solid #ddd;
|
|
padding: 8px;
|
|
}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
%s
|
|
</body>
|
|
</html>
|
|
""" % TableStructureRecognizer.construct_table(boxes, html=True)
|
|
return html
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--inputs',
|
|
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
|
|
required=True)
|
|
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './layouts_outputs'",
|
|
default="./layouts_outputs")
|
|
parser.add_argument(
|
|
'--threshold',
|
|
help="A threshold to filter out detections. Default: 0.5",
|
|
default=0.5)
|
|
parser.add_argument('--mode', help="Task mode: layout recognition or table structure recognition", choices=["layout", "tsr"],
|
|
default="layout")
|
|
args = parser.parse_args()
|
|
main(args)
|
|
|