|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import re |
|
from dataclasses import dataclass |
|
|
|
from rag.settings import TAG_FLD, PAGERANK_FLD |
|
from rag.utils import rmSpace |
|
from rag.nlp import rag_tokenizer, query |
|
import numpy as np |
|
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr |
|
|
|
|
|
def index_name(uid): return f"ragflow_{uid}" |
|
|
|
|
|
class Dealer: |
|
def __init__(self, dataStore: DocStoreConnection): |
|
self.qryr = query.FulltextQueryer() |
|
self.dataStore = dataStore |
|
|
|
@dataclass |
|
class SearchResult: |
|
total: int |
|
ids: list[str] |
|
query_vector: list[float] | None = None |
|
field: dict | None = None |
|
highlight: dict | None = None |
|
aggregation: list | dict | None = None |
|
keywords: list[str] | None = None |
|
group_docs: list[list] | None = None |
|
|
|
def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1): |
|
qv, _ = emb_mdl.encode_queries(txt) |
|
shape = np.array(qv).shape |
|
if len(shape) > 1: |
|
raise Exception( |
|
f"Dealer.get_vector returned array's shape {shape} doesn't match expectation(exact one dimension).") |
|
embedding_data = [float(v) for v in qv] |
|
vector_column_name = f"q_{len(embedding_data)}_vec" |
|
return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity}) |
|
|
|
def get_filters(self, req): |
|
condition = dict() |
|
for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items(): |
|
if key in req and req[key] is not None: |
|
condition[field] = req[key] |
|
|
|
for key in ["knowledge_graph_kwd", "available_int", "entity_kwd", "from_entity_kwd", "to_entity_kwd", "removed_kwd"]: |
|
if key in req and req[key] is not None: |
|
condition[key] = req[key] |
|
return condition |
|
|
|
def search(self, req, idx_names: str | list[str], |
|
kb_ids: list[str], |
|
emb_mdl=None, |
|
highlight=False, |
|
rank_feature: dict | None = None |
|
): |
|
filters = self.get_filters(req) |
|
orderBy = OrderByExpr() |
|
|
|
pg = int(req.get("page", 1)) - 1 |
|
topk = int(req.get("topk", 1024)) |
|
ps = int(req.get("size", topk)) |
|
offset, limit = pg * ps, ps |
|
|
|
src = req.get("fields", |
|
["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", "position_int", |
|
"doc_id", "page_num_int", "top_int", "create_timestamp_flt", "knowledge_graph_kwd", |
|
"question_kwd", "question_tks", |
|
"available_int", "content_with_weight", PAGERANK_FLD, TAG_FLD]) |
|
kwds = set([]) |
|
|
|
qst = req.get("question", "") |
|
q_vec = [] |
|
if not qst: |
|
if req.get("sort"): |
|
orderBy.asc("page_num_int") |
|
orderBy.asc("top_int") |
|
orderBy.desc("create_timestamp_flt") |
|
res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids) |
|
total = self.dataStore.getTotal(res) |
|
logging.debug("Dealer.search TOTAL: {}".format(total)) |
|
else: |
|
highlightFields = ["content_ltks", "title_tks"] if highlight else [] |
|
matchText, keywords = self.qryr.question(qst, min_match=0.3) |
|
if emb_mdl is None: |
|
matchExprs = [matchText] |
|
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, |
|
idx_names, kb_ids, rank_feature=rank_feature) |
|
total = self.dataStore.getTotal(res) |
|
logging.debug("Dealer.search TOTAL: {}".format(total)) |
|
else: |
|
matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1)) |
|
q_vec = matchDense.embedding_data |
|
src.append(f"q_{len(q_vec)}_vec") |
|
|
|
fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"}) |
|
matchExprs = [matchText, matchDense, fusionExpr] |
|
|
|
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, |
|
idx_names, kb_ids, rank_feature=rank_feature) |
|
total = self.dataStore.getTotal(res) |
|
logging.debug("Dealer.search TOTAL: {}".format(total)) |
|
|
|
|
|
if total == 0: |
|
matchText, _ = self.qryr.question(qst, min_match=0.1) |
|
filters.pop("doc_ids", None) |
|
matchDense.extra_options["similarity"] = 0.17 |
|
res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], |
|
orderBy, offset, limit, idx_names, kb_ids, rank_feature=rank_feature) |
|
total = self.dataStore.getTotal(res) |
|
logging.debug("Dealer.search 2 TOTAL: {}".format(total)) |
|
|
|
for k in keywords: |
|
kwds.add(k) |
|
for kk in rag_tokenizer.fine_grained_tokenize(k).split(): |
|
if len(kk) < 2: |
|
continue |
|
if kk in kwds: |
|
continue |
|
kwds.add(kk) |
|
|
|
logging.debug(f"TOTAL: {total}") |
|
ids = self.dataStore.getChunkIds(res) |
|
keywords = list(kwds) |
|
highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight") |
|
aggs = self.dataStore.getAggregation(res, "docnm_kwd") |
|
return self.SearchResult( |
|
total=total, |
|
ids=ids, |
|
query_vector=q_vec, |
|
aggregation=aggs, |
|
highlight=highlight, |
|
field=self.dataStore.getFields(res, src), |
|
keywords=keywords |
|
) |
|
|
|
@staticmethod |
|
def trans2floats(txt): |
|
return [float(t) for t in txt.split("\t")] |
|
|
|
def insert_citations(self, answer, chunks, chunk_v, |
|
embd_mdl, tkweight=0.1, vtweight=0.9): |
|
assert len(chunks) == len(chunk_v) |
|
if not chunks: |
|
return answer, set([]) |
|
pieces = re.split(r"(```)", answer) |
|
if len(pieces) >= 3: |
|
i = 0 |
|
pieces_ = [] |
|
while i < len(pieces): |
|
if pieces[i] == "```": |
|
st = i |
|
i += 1 |
|
while i < len(pieces) and pieces[i] != "```": |
|
i += 1 |
|
if i < len(pieces): |
|
i += 1 |
|
pieces_.append("".join(pieces[st: i]) + "\n") |
|
else: |
|
pieces_.extend( |
|
re.split( |
|
r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", |
|
pieces[i])) |
|
i += 1 |
|
pieces = pieces_ |
|
else: |
|
pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer) |
|
for i in range(1, len(pieces)): |
|
if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]): |
|
pieces[i - 1] += pieces[i][0] |
|
pieces[i] = pieces[i][1:] |
|
idx = [] |
|
pieces_ = [] |
|
for i, t in enumerate(pieces): |
|
if len(t) < 5: |
|
continue |
|
idx.append(i) |
|
pieces_.append(t) |
|
logging.debug("{} => {}".format(answer, pieces_)) |
|
if not pieces_: |
|
return answer, set([]) |
|
|
|
ans_v, _ = embd_mdl.encode(pieces_) |
|
for i in range(len(chunk_v)): |
|
if len(ans_v[0]) != len(chunk_v[i]): |
|
chunk_v[i] = [0.0]*len(ans_v[0]) |
|
logging.warning("The dimension of query and chunk do not match: {} vs. {}".format(len(ans_v[0]), len(chunk_v[i]))) |
|
|
|
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format( |
|
len(ans_v[0]), len(chunk_v[0])) |
|
|
|
chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split() |
|
for ck in chunks] |
|
cites = {} |
|
thr = 0.63 |
|
while thr > 0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks: |
|
for i, a in enumerate(pieces_): |
|
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i], |
|
chunk_v, |
|
rag_tokenizer.tokenize( |
|
self.qryr.rmWWW(pieces_[i])).split(), |
|
chunks_tks, |
|
tkweight, vtweight) |
|
mx = np.max(sim) * 0.99 |
|
logging.debug("{} SIM: {}".format(pieces_[i], mx)) |
|
if mx < thr: |
|
continue |
|
cites[idx[i]] = list( |
|
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4] |
|
thr *= 0.8 |
|
|
|
res = "" |
|
seted = set([]) |
|
for i, p in enumerate(pieces): |
|
res += p |
|
if i not in idx: |
|
continue |
|
if i not in cites: |
|
continue |
|
for c in cites[i]: |
|
assert int(c) < len(chunk_v) |
|
for c in cites[i]: |
|
if c in seted: |
|
continue |
|
res += f" ##{c}$$" |
|
seted.add(c) |
|
|
|
return res, seted |
|
|
|
def _rank_feature_scores(self, query_rfea, search_res): |
|
|
|
rank_fea = [] |
|
pageranks = [] |
|
for chunk_id in search_res.ids: |
|
pageranks.append(search_res.field[chunk_id].get(PAGERANK_FLD, 0)) |
|
pageranks = np.array(pageranks, dtype=float) |
|
|
|
if not query_rfea: |
|
return np.array([0 for _ in range(len(search_res.ids))]) + pageranks |
|
|
|
q_denor = np.sqrt(np.sum([s*s for t,s in query_rfea.items() if t != PAGERANK_FLD])) |
|
for i in search_res.ids: |
|
nor, denor = 0, 0 |
|
for t, sc in eval(search_res.field[i].get(TAG_FLD, "{}")).items(): |
|
if t in query_rfea: |
|
nor += query_rfea[t] * sc |
|
denor += sc * sc |
|
if denor == 0: |
|
rank_fea.append(0) |
|
else: |
|
rank_fea.append(nor/np.sqrt(denor)/q_denor) |
|
return np.array(rank_fea)*10. + pageranks |
|
|
|
def rerank(self, sres, query, tkweight=0.3, |
|
vtweight=0.7, cfield="content_ltks", |
|
rank_feature: dict | None = None |
|
): |
|
_, keywords = self.qryr.question(query) |
|
vector_size = len(sres.query_vector) |
|
vector_column = f"q_{vector_size}_vec" |
|
zero_vector = [0.0] * vector_size |
|
ins_embd = [] |
|
for chunk_id in sres.ids: |
|
vector = sres.field[chunk_id].get(vector_column, zero_vector) |
|
if isinstance(vector, str): |
|
vector = [float(v) for v in vector.split("\t")] |
|
ins_embd.append(vector) |
|
if not ins_embd: |
|
return [], [], [] |
|
|
|
for i in sres.ids: |
|
if isinstance(sres.field[i].get("important_kwd", []), str): |
|
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]] |
|
ins_tw = [] |
|
for i in sres.ids: |
|
content_ltks = sres.field[i][cfield].split() |
|
title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t] |
|
question_tks = [t for t in sres.field[i].get("question_tks", "").split() if t] |
|
important_kwd = sres.field[i].get("important_kwd", []) |
|
tks = content_ltks + title_tks * 2 + important_kwd * 5 + question_tks * 6 |
|
ins_tw.append(tks) |
|
|
|
|
|
rank_fea = self._rank_feature_scores(rank_feature, sres) |
|
|
|
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector, |
|
ins_embd, |
|
keywords, |
|
ins_tw, tkweight, vtweight) |
|
|
|
return sim + rank_fea, tksim, vtsim |
|
|
|
def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3, |
|
vtweight=0.7, cfield="content_ltks", |
|
rank_feature: dict | None = None): |
|
_, keywords = self.qryr.question(query) |
|
|
|
for i in sres.ids: |
|
if isinstance(sres.field[i].get("important_kwd", []), str): |
|
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]] |
|
ins_tw = [] |
|
for i in sres.ids: |
|
content_ltks = sres.field[i][cfield].split() |
|
title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t] |
|
important_kwd = sres.field[i].get("important_kwd", []) |
|
tks = content_ltks + title_tks + important_kwd |
|
ins_tw.append(tks) |
|
|
|
tksim = self.qryr.token_similarity(keywords, ins_tw) |
|
vtsim, _ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw]) |
|
|
|
rank_fea = self._rank_feature_scores(rank_feature, sres) |
|
|
|
return tkweight * (np.array(tksim)+rank_fea) + vtweight * vtsim, tksim, vtsim |
|
|
|
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst): |
|
return self.qryr.hybrid_similarity(ans_embd, |
|
ins_embd, |
|
rag_tokenizer.tokenize(ans).split(), |
|
rag_tokenizer.tokenize(inst).split()) |
|
|
|
def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2, |
|
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, |
|
rerank_mdl=None, highlight=False, |
|
rank_feature: dict | None = {PAGERANK_FLD: 10}): |
|
ranks = {"total": 0, "chunks": [], "doc_aggs": {}} |
|
if not question: |
|
return ranks |
|
|
|
RERANK_PAGE_LIMIT = 3 |
|
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": max(page_size * RERANK_PAGE_LIMIT, 128), |
|
"question": question, "vector": True, "topk": top, |
|
"similarity": similarity_threshold, |
|
"available_int": 1} |
|
|
|
if page > RERANK_PAGE_LIMIT: |
|
req["page"] = page |
|
req["size"] = page_size |
|
|
|
if isinstance(tenant_ids, str): |
|
tenant_ids = tenant_ids.split(",") |
|
|
|
sres = self.search(req, [index_name(tid) for tid in tenant_ids], |
|
kb_ids, embd_mdl, highlight, rank_feature=rank_feature) |
|
ranks["total"] = sres.total |
|
|
|
if page <= RERANK_PAGE_LIMIT: |
|
if rerank_mdl and sres.total > 0: |
|
sim, tsim, vsim = self.rerank_by_model(rerank_mdl, |
|
sres, question, 1 - vector_similarity_weight, |
|
vector_similarity_weight, |
|
rank_feature=rank_feature) |
|
else: |
|
sim, tsim, vsim = self.rerank( |
|
sres, question, 1 - vector_similarity_weight, vector_similarity_weight, |
|
rank_feature=rank_feature) |
|
idx = np.argsort(sim * -1)[(page - 1) * page_size:page * page_size] |
|
else: |
|
sim = tsim = vsim = [1] * len(sres.ids) |
|
idx = list(range(len(sres.ids))) |
|
|
|
dim = len(sres.query_vector) |
|
vector_column = f"q_{dim}_vec" |
|
zero_vector = [0.0] * dim |
|
for i in idx: |
|
if sim[i] < similarity_threshold: |
|
break |
|
if len(ranks["chunks"]) >= page_size: |
|
if aggs: |
|
continue |
|
break |
|
id = sres.ids[i] |
|
chunk = sres.field[id] |
|
dnm = chunk["docnm_kwd"] |
|
did = chunk["doc_id"] |
|
position_int = chunk.get("position_int", []) |
|
d = { |
|
"chunk_id": id, |
|
"content_ltks": chunk["content_ltks"], |
|
"content_with_weight": chunk["content_with_weight"], |
|
"doc_id": chunk["doc_id"], |
|
"docnm_kwd": dnm, |
|
"kb_id": chunk["kb_id"], |
|
"important_kwd": chunk.get("important_kwd", []), |
|
"image_id": chunk.get("img_id", ""), |
|
"similarity": sim[i], |
|
"vector_similarity": vsim[i], |
|
"term_similarity": tsim[i], |
|
"vector": chunk.get(vector_column, zero_vector), |
|
"positions": position_int, |
|
} |
|
if highlight and sres.highlight: |
|
if id in sres.highlight: |
|
d["highlight"] = rmSpace(sres.highlight[id]) |
|
else: |
|
d["highlight"] = d["content_with_weight"] |
|
ranks["chunks"].append(d) |
|
if dnm not in ranks["doc_aggs"]: |
|
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0} |
|
ranks["doc_aggs"][dnm]["count"] += 1 |
|
ranks["doc_aggs"] = [{"doc_name": k, |
|
"doc_id": v["doc_id"], |
|
"count": v["count"]} for k, |
|
v in sorted(ranks["doc_aggs"].items(), |
|
key=lambda x: x[1]["count"] * -1)] |
|
ranks["chunks"] = ranks["chunks"][:page_size] |
|
|
|
return ranks |
|
|
|
def sql_retrieval(self, sql, fetch_size=128, format="json"): |
|
tbl = self.dataStore.sql(sql, fetch_size, format) |
|
return tbl |
|
|
|
def chunk_list(self, doc_id: str, tenant_id: str, |
|
kb_ids: list[str], max_count=1024, |
|
offset=0, |
|
fields=["docnm_kwd", "content_with_weight", "img_id"]): |
|
condition = {"doc_id": doc_id} |
|
res = [] |
|
bs = 128 |
|
for p in range(offset, max_count, bs): |
|
es_res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), p, bs, index_name(tenant_id), |
|
kb_ids) |
|
dict_chunks = self.dataStore.getFields(es_res, fields) |
|
for id, doc in dict_chunks.items(): |
|
doc["id"] = id |
|
if dict_chunks: |
|
res.extend(dict_chunks.values()) |
|
if len(dict_chunks.values()) < bs: |
|
break |
|
return res |
|
|
|
def all_tags(self, tenant_id: str, kb_ids: list[str], S=1000): |
|
res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"]) |
|
return self.dataStore.getAggregation(res, "tag_kwd") |
|
|
|
def all_tags_in_portion(self, tenant_id: str, kb_ids: list[str], S=1000): |
|
res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"]) |
|
res = self.dataStore.getAggregation(res, "tag_kwd") |
|
total = np.sum([c for _, c in res]) |
|
return {t: (c + 1) / (total + S) for t, c in res} |
|
|
|
def tag_content(self, tenant_id: str, kb_ids: list[str], doc, all_tags, topn_tags=3, keywords_topn=30, S=1000): |
|
idx_nm = index_name(tenant_id) |
|
match_txt = self.qryr.paragraph(doc["title_tks"] + " " + doc["content_ltks"], doc.get("important_kwd", []), keywords_topn) |
|
res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nm, kb_ids, ["tag_kwd"]) |
|
aggs = self.dataStore.getAggregation(res, "tag_kwd") |
|
if not aggs: |
|
return False |
|
cnt = np.sum([c for _, c in aggs]) |
|
tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / (all_tags.get(a, 0.0001)))) for a, c in aggs], |
|
key=lambda x: x[1] * -1)[:topn_tags] |
|
doc[TAG_FLD] = {a: c for a, c in tag_fea if c > 0} |
|
return True |
|
|
|
def tag_query(self, question: str, tenant_ids: str | list[str], kb_ids: list[str], all_tags, topn_tags=3, S=1000): |
|
if isinstance(tenant_ids, str): |
|
idx_nms = index_name(tenant_ids) |
|
else: |
|
idx_nms = [index_name(tid) for tid in tenant_ids] |
|
match_txt, _ = self.qryr.question(question, min_match=0.0) |
|
res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nms, kb_ids, ["tag_kwd"]) |
|
aggs = self.dataStore.getAggregation(res, "tag_kwd") |
|
if not aggs: |
|
return {} |
|
cnt = np.sum([c for _, c in aggs]) |
|
tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / (all_tags.get(a, 0.0001)))) for a, c in aggs], |
|
key=lambda x: x[1] * -1)[:topn_tags] |
|
return {a: max(1, c) for a, c in tag_fea} |
|
|