|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from openai.lib.azure import AzureOpenAI |
|
from zhipuai import ZhipuAI |
|
import io |
|
from abc import ABC |
|
from ollama import Client |
|
from PIL import Image |
|
from openai import OpenAI |
|
import os |
|
import base64 |
|
from io import BytesIO |
|
import json |
|
import requests |
|
|
|
from rag.nlp import is_english |
|
from api.utils import get_uuid |
|
from api.utils.file_utils import get_project_base_directory |
|
|
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
def describe(self, image, max_tokens=300): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
def chat(self, system, history, gen_conf, image=""): |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
try: |
|
for his in history: |
|
if his["role"] == "user": |
|
his["content"] = self.chat_prompt(his["content"], image) |
|
|
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
max_tokens=gen_conf.get("max_tokens", 1000), |
|
temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7) |
|
) |
|
return response.choices[0].message.content.strip(), response.usage.total_tokens |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""): |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
|
|
ans = "" |
|
tk_count = 0 |
|
try: |
|
for his in history: |
|
if his["role"] == "user": |
|
his["content"] = self.chat_prompt(his["content"], image) |
|
|
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
max_tokens=gen_conf.get("max_tokens", 1000), |
|
temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7), |
|
stream=True |
|
) |
|
for resp in response: |
|
if not resp.choices[0].delta.content: |
|
continue |
|
delta = resp.choices[0].delta.content |
|
ans += delta |
|
if resp.choices[0].finish_reason == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" |
|
tk_count = resp.usage.total_tokens |
|
if resp.choices[0].finish_reason == "stop": |
|
tk_count = resp.usage.total_tokens |
|
yield ans |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield tk_count |
|
|
|
def image2base64(self, image): |
|
if isinstance(image, bytes): |
|
return base64.b64encode(image).decode("utf-8") |
|
if isinstance(image, BytesIO): |
|
return base64.b64encode(image.getvalue()).decode("utf-8") |
|
buffered = BytesIO() |
|
try: |
|
image.save(buffered, format="JPEG") |
|
except Exception: |
|
image.save(buffered, format="PNG") |
|
return base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
def prompt(self, b64): |
|
return [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{b64}" |
|
}, |
|
}, |
|
{ |
|
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else |
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.", |
|
}, |
|
], |
|
} |
|
] |
|
|
|
def chat_prompt(self, text, b64): |
|
return [ |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{b64}", |
|
}, |
|
}, |
|
{ |
|
"type": "text", |
|
"text": text |
|
}, |
|
] |
|
|
|
|
|
class GptV4(Base): |
|
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"): |
|
if not base_url: |
|
base_url="https://api.openai.com/v1" |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
def describe(self, image, max_tokens=300): |
|
b64 = self.image2base64(image) |
|
prompt = self.prompt(b64) |
|
for i in range(len(prompt)): |
|
for c in prompt[i]["content"]: |
|
if "text" in c: |
|
c["type"] = "text" |
|
|
|
res = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=prompt, |
|
max_tokens=max_tokens, |
|
) |
|
return res.choices[0].message.content.strip(), res.usage.total_tokens |
|
|
|
class AzureGptV4(Base): |
|
def __init__(self, key, model_name, lang="Chinese", **kwargs): |
|
api_key = json.loads(key).get('api_key', '') |
|
api_version = json.loads(key).get('api_version', '2024-02-01') |
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
def describe(self, image, max_tokens=300): |
|
b64 = self.image2base64(image) |
|
prompt = self.prompt(b64) |
|
for i in range(len(prompt)): |
|
for c in prompt[i]["content"]: |
|
if "text" in c: |
|
c["type"] = "text" |
|
|
|
res = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=prompt, |
|
max_tokens=max_tokens, |
|
) |
|
return res.choices[0].message.content.strip(), res.usage.total_tokens |
|
|
|
|
|
class QWenCV(Base): |
|
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs): |
|
import dashscope |
|
dashscope.api_key = key |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
def prompt(self, binary): |
|
|
|
tmp_dir = get_project_base_directory("tmp") |
|
if not os.path.exists(tmp_dir): |
|
os.mkdir(tmp_dir) |
|
path = os.path.join(tmp_dir, "%s.jpg" % get_uuid()) |
|
Image.open(io.BytesIO(binary)).save(path) |
|
return [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"image": f"file://{path}" |
|
}, |
|
{ |
|
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else |
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.", |
|
}, |
|
], |
|
} |
|
] |
|
|
|
def chat_prompt(self, text, b64): |
|
return [ |
|
{"image": f"{b64}"}, |
|
{"text": text}, |
|
] |
|
|
|
def describe(self, image, max_tokens=300): |
|
from http import HTTPStatus |
|
from dashscope import MultiModalConversation |
|
response = MultiModalConversation.call(model=self.model_name, |
|
messages=self.prompt(image)) |
|
if response.status_code == HTTPStatus.OK: |
|
return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens |
|
return response.message, 0 |
|
|
|
def chat(self, system, history, gen_conf, image=""): |
|
from http import HTTPStatus |
|
from dashscope import MultiModalConversation |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
|
|
for his in history: |
|
if his["role"] == "user": |
|
his["content"] = self.chat_prompt(his["content"], image) |
|
response = MultiModalConversation.call(model=self.model_name, messages=history, |
|
max_tokens=gen_conf.get("max_tokens", 1000), |
|
temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7)) |
|
|
|
ans = "" |
|
tk_count = 0 |
|
if response.status_code == HTTPStatus.OK: |
|
ans += response.output.choices[0]['message']['content'] |
|
tk_count += response.usage.total_tokens |
|
if response.output.choices[0].get("finish_reason", "") == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" |
|
return ans, tk_count |
|
|
|
return "**ERROR**: " + response.message, tk_count |
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""): |
|
from http import HTTPStatus |
|
from dashscope import MultiModalConversation |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
|
|
for his in history: |
|
if his["role"] == "user": |
|
his["content"] = self.chat_prompt(his["content"], image) |
|
|
|
ans = "" |
|
tk_count = 0 |
|
try: |
|
response = MultiModalConversation.call(model=self.model_name, messages=history, |
|
max_tokens=gen_conf.get("max_tokens", 1000), |
|
temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7), |
|
stream=True) |
|
for resp in response: |
|
if resp.status_code == HTTPStatus.OK: |
|
ans = resp.output.choices[0]['message']['content'] |
|
tk_count = resp.usage.total_tokens |
|
if resp.output.choices[0].get("finish_reason", "") == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" |
|
yield ans |
|
else: |
|
yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find( |
|
"Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**" |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield tk_count |
|
|
|
|
|
class Zhipu4V(Base): |
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs): |
|
self.client = ZhipuAI(api_key=key) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
def describe(self, image, max_tokens=1024): |
|
b64 = self.image2base64(image) |
|
|
|
prompt = self.prompt(b64) |
|
prompt[0]["content"][1]["type"] = "text" |
|
|
|
res = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=prompt, |
|
max_tokens=max_tokens, |
|
) |
|
return res.choices[0].message.content.strip(), res.usage.total_tokens |
|
|
|
def chat(self, system, history, gen_conf, image=""): |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
try: |
|
for his in history: |
|
if his["role"] == "user": |
|
his["content"] = self.chat_prompt(his["content"], image) |
|
|
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
max_tokens=gen_conf.get("max_tokens", 1000), |
|
temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7) |
|
) |
|
return response.choices[0].message.content.strip(), response.usage.total_tokens |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""): |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
|
|
ans = "" |
|
tk_count = 0 |
|
try: |
|
for his in history: |
|
if his["role"] == "user": |
|
his["content"] = self.chat_prompt(his["content"], image) |
|
|
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=history, |
|
max_tokens=gen_conf.get("max_tokens", 1000), |
|
temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7), |
|
stream=True |
|
) |
|
for resp in response: |
|
if not resp.choices[0].delta.content: |
|
continue |
|
delta = resp.choices[0].delta.content |
|
ans += delta |
|
if resp.choices[0].finish_reason == "length": |
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( |
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" |
|
tk_count = resp.usage.total_tokens |
|
if resp.choices[0].finish_reason == "stop": |
|
tk_count = resp.usage.total_tokens |
|
yield ans |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield tk_count |
|
|
|
|
|
class OllamaCV(Base): |
|
def __init__(self, key, model_name, lang="Chinese", **kwargs): |
|
self.client = Client(host=kwargs["base_url"]) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
def describe(self, image, max_tokens=1024): |
|
prompt = self.prompt("") |
|
try: |
|
options = {"num_predict": max_tokens} |
|
response = self.client.generate( |
|
model=self.model_name, |
|
prompt=prompt[0]["content"][1]["text"], |
|
images=[image], |
|
options=options |
|
) |
|
ans = response["response"].strip() |
|
return ans, 128 |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat(self, system, history, gen_conf, image=""): |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
|
|
try: |
|
for his in history: |
|
if his["role"] == "user": |
|
his["images"] = [image] |
|
options = {} |
|
if "temperature" in gen_conf: |
|
options["temperature"] = gen_conf["temperature"] |
|
if "max_tokens" in gen_conf: |
|
options["num_predict"] = gen_conf["max_tokens"] |
|
if "top_p" in gen_conf: |
|
options["top_k"] = gen_conf["top_p"] |
|
if "presence_penalty" in gen_conf: |
|
options["presence_penalty"] = gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
options["frequency_penalty"] = gen_conf["frequency_penalty"] |
|
response = self.client.chat( |
|
model=self.model_name, |
|
messages=history, |
|
options=options, |
|
keep_alive=-1 |
|
) |
|
|
|
ans = response["message"]["content"].strip() |
|
return ans, response["eval_count"] + response.get("prompt_eval_count", 0) |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""): |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
|
|
for his in history: |
|
if his["role"] == "user": |
|
his["images"] = [image] |
|
options = {} |
|
if "temperature" in gen_conf: |
|
options["temperature"] = gen_conf["temperature"] |
|
if "max_tokens" in gen_conf: |
|
options["num_predict"] = gen_conf["max_tokens"] |
|
if "top_p" in gen_conf: |
|
options["top_k"] = gen_conf["top_p"] |
|
if "presence_penalty" in gen_conf: |
|
options["presence_penalty"] = gen_conf["presence_penalty"] |
|
if "frequency_penalty" in gen_conf: |
|
options["frequency_penalty"] = gen_conf["frequency_penalty"] |
|
ans = "" |
|
try: |
|
response = self.client.chat( |
|
model=self.model_name, |
|
messages=history, |
|
stream=True, |
|
options=options, |
|
keep_alive=-1 |
|
) |
|
for resp in response: |
|
if resp["done"]: |
|
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) |
|
ans += resp["message"]["content"] |
|
yield ans |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
yield 0 |
|
|
|
|
|
class LocalAICV(GptV4): |
|
def __init__(self, key, model_name, base_url, lang="Chinese"): |
|
if not base_url: |
|
raise ValueError("Local cv model url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key="empty", base_url=base_url) |
|
self.model_name = model_name.split("___")[0] |
|
self.lang = lang |
|
|
|
|
|
class XinferenceCV(Base): |
|
def __init__(self, key, model_name="", lang="Chinese", base_url=""): |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
def describe(self, image, max_tokens=300): |
|
b64 = self.image2base64(image) |
|
|
|
res = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=self.prompt(b64), |
|
max_tokens=max_tokens, |
|
) |
|
return res.choices[0].message.content.strip(), res.usage.total_tokens |
|
|
|
class GeminiCV(Base): |
|
def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs): |
|
from google.generativeai import client, GenerativeModel |
|
client.configure(api_key=key) |
|
_client = client.get_default_generative_client() |
|
self.model_name = model_name |
|
self.model = GenerativeModel(model_name=self.model_name) |
|
self.model._client = _client |
|
self.lang = lang |
|
|
|
def describe(self, image, max_tokens=2048): |
|
from PIL.Image import open |
|
gen_config = {'max_output_tokens':max_tokens} |
|
prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \ |
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." |
|
b64 = self.image2base64(image) |
|
img = open(BytesIO(base64.b64decode(b64))) |
|
input = [prompt,img] |
|
res = self.model.generate_content( |
|
input, |
|
generation_config=gen_config, |
|
) |
|
return res.text,res.usage_metadata.total_token_count |
|
|
|
def chat(self, system, history, gen_conf, image=""): |
|
from transformers import GenerationConfig |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
try: |
|
for his in history: |
|
if his["role"] == "assistant": |
|
his["role"] = "model" |
|
his["parts"] = [his["content"]] |
|
his.pop("content") |
|
if his["role"] == "user": |
|
his["parts"] = [his["content"]] |
|
his.pop("content") |
|
history[-1]["parts"].append("data:image/jpeg;base64," + image) |
|
|
|
response = self.model.generate_content(history, generation_config=GenerationConfig( |
|
max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7))) |
|
|
|
ans = response.text |
|
return ans, response.usage_metadata.total_token_count |
|
except Exception as e: |
|
return "**ERROR**: " + str(e), 0 |
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""): |
|
from transformers import GenerationConfig |
|
if system: |
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] |
|
|
|
ans = "" |
|
try: |
|
for his in history: |
|
if his["role"] == "assistant": |
|
his["role"] = "model" |
|
his["parts"] = [his["content"]] |
|
his.pop("content") |
|
if his["role"] == "user": |
|
his["parts"] = [his["content"]] |
|
his.pop("content") |
|
history[-1]["parts"].append("data:image/jpeg;base64," + image) |
|
|
|
response = self.model.generate_content(history, generation_config=GenerationConfig( |
|
max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3), |
|
top_p=gen_conf.get("top_p", 0.7)), stream=True) |
|
|
|
for resp in response: |
|
if not resp.text: |
|
continue |
|
ans += resp.text |
|
yield ans |
|
except Exception as e: |
|
yield ans + "\n**ERROR**: " + str(e) |
|
|
|
yield response._chunks[-1].usage_metadata.total_token_count |
|
|
|
|
|
class OpenRouterCV(GptV4): |
|
def __init__( |
|
self, |
|
key, |
|
model_name, |
|
lang="Chinese", |
|
base_url="https://openrouter.ai/api/v1", |
|
): |
|
if not base_url: |
|
base_url = "https://openrouter.ai/api/v1" |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
|
|
class LocalCV(Base): |
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs): |
|
pass |
|
|
|
def describe(self, image, max_tokens=1024): |
|
return "", 0 |
|
|
|
|
|
class NvidiaCV(Base): |
|
def __init__( |
|
self, |
|
key, |
|
model_name, |
|
lang="Chinese", |
|
base_url="https://ai.api.nvidia.com/v1/vlm", |
|
): |
|
if not base_url: |
|
base_url = ("https://ai.api.nvidia.com/v1/vlm",) |
|
self.lang = lang |
|
factory, llm_name = model_name.split("/") |
|
if factory != "liuhaotian": |
|
self.base_url = os.path.join(base_url, factory, llm_name) |
|
else: |
|
self.base_url = os.path.join( |
|
base_url, "community", llm_name.replace("-v1.6", "16") |
|
) |
|
self.key = key |
|
|
|
def describe(self, image, max_tokens=1024): |
|
b64 = self.image2base64(image) |
|
response = requests.post( |
|
url=self.base_url, |
|
headers={ |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"Authorization": f"Bearer {self.key}", |
|
}, |
|
json={ |
|
"messages": self.prompt(b64), |
|
"max_tokens": max_tokens, |
|
}, |
|
) |
|
response = response.json() |
|
return ( |
|
response["choices"][0]["message"]["content"].strip(), |
|
response["usage"]["total_tokens"], |
|
) |
|
|
|
def prompt(self, b64): |
|
return [ |
|
{ |
|
"role": "user", |
|
"content": ( |
|
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" |
|
if self.lang.lower() == "chinese" |
|
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." |
|
) |
|
+ f' <img src="data:image/jpeg;base64,{b64}"/>', |
|
} |
|
] |
|
|
|
def chat_prompt(self, text, b64): |
|
return [ |
|
{ |
|
"role": "user", |
|
"content": text + f' <img src="data:image/jpeg;base64,{b64}"/>', |
|
} |
|
] |
|
|
|
|
|
class StepFunCV(GptV4): |
|
def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"): |
|
if not base_url: |
|
base_url="https://api.stepfun.com/v1" |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
|
|
class LmStudioCV(GptV4): |
|
def __init__(self, key, model_name, lang="Chinese", base_url=""): |
|
if not base_url: |
|
raise ValueError("Local llm url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url) |
|
self.model_name = model_name |
|
self.lang = lang |
|
|
|
|
|
class OpenAI_APICV(GptV4): |
|
def __init__(self, key, model_name, lang="Chinese", base_url=""): |
|
if not base_url: |
|
raise ValueError("url cannot be None") |
|
if base_url.split("/")[-1] != "v1": |
|
base_url = os.path.join(base_url, "v1") |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name.split("___")[0] |
|
self.lang = lang |
|
|
|
|
|
class TogetherAICV(GptV4): |
|
def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1"): |
|
if not base_url: |
|
base_url = "https://api.together.xyz/v1" |
|
super().__init__(key, model_name,lang,base_url) |
|
|
|
|
|
class YiCV(GptV4): |
|
def __init__(self, key, model_name, lang="Chinese",base_url="https://api.lingyiwanwu.com/v1",): |
|
if not base_url: |
|
base_url = "https://api.lingyiwanwu.com/v1" |
|
super().__init__(key, model_name,lang,base_url) |
|
|
|
|
|
class HunyuanCV(Base): |
|
def __init__(self, key, model_name, lang="Chinese",base_url=None): |
|
from tencentcloud.common import credential |
|
from tencentcloud.hunyuan.v20230901 import hunyuan_client |
|
|
|
key = json.loads(key) |
|
sid = key.get("hunyuan_sid", "") |
|
sk = key.get("hunyuan_sk", "") |
|
cred = credential.Credential(sid, sk) |
|
self.model_name = model_name |
|
self.client = hunyuan_client.HunyuanClient(cred, "") |
|
self.lang = lang |
|
|
|
def describe(self, image, max_tokens=4096): |
|
from tencentcloud.hunyuan.v20230901 import models |
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( |
|
TencentCloudSDKException, |
|
) |
|
|
|
b64 = self.image2base64(image) |
|
req = models.ChatCompletionsRequest() |
|
params = {"Model": self.model_name, "Messages": self.prompt(b64)} |
|
req.from_json_string(json.dumps(params)) |
|
ans = "" |
|
try: |
|
response = self.client.ChatCompletions(req) |
|
ans = response.Choices[0].Message.Content |
|
return ans, response.Usage.TotalTokens |
|
except TencentCloudSDKException as e: |
|
return ans + "\n**ERROR**: " + str(e), 0 |
|
|
|
def prompt(self, b64): |
|
return [ |
|
{ |
|
"Role": "user", |
|
"Contents": [ |
|
{ |
|
"Type": "image_url", |
|
"ImageUrl": { |
|
"Url": f"data:image/jpeg;base64,{b64}" |
|
}, |
|
}, |
|
{ |
|
"Type": "text", |
|
"Text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else |
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.", |
|
}, |
|
], |
|
} |
|
] |