|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re
|
|
from copy import deepcopy
|
|
|
|
from api.db import LLMType
|
|
from api.db.db_models import Dialog, Conversation
|
|
from api.db.services.common_service import CommonService
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
|
|
from api.settings import chat_logger, retrievaler
|
|
from rag.app.resume import forbidden_select_fields4resume
|
|
from rag.nlp.rag_tokenizer import is_chinese
|
|
from rag.nlp.search import index_name
|
|
from rag.utils import rmSpace, num_tokens_from_string, encoder
|
|
|
|
|
|
class DialogService(CommonService):
|
|
model = Dialog
|
|
|
|
|
|
class ConversationService(CommonService):
|
|
model = Conversation
|
|
|
|
|
|
def message_fit_in(msg, max_length=4000):
|
|
def count():
|
|
nonlocal msg
|
|
tks_cnts = []
|
|
for m in msg:
|
|
tks_cnts.append(
|
|
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
|
|
total = 0
|
|
for m in tks_cnts:
|
|
total += m["count"]
|
|
return total
|
|
|
|
c = count()
|
|
if c < max_length:
|
|
return c, msg
|
|
|
|
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
|
|
msg_.append(msg[-1])
|
|
msg = msg_
|
|
c = count()
|
|
if c < max_length:
|
|
return c, msg
|
|
|
|
ll = num_tokens_from_string(msg_[0]["content"])
|
|
l = num_tokens_from_string(msg_[-1]["content"])
|
|
if ll / (ll + l) > 0.8:
|
|
m = msg_[0]["content"]
|
|
m = encoder.decode(encoder.encode(m)[:max_length - l])
|
|
msg[0]["content"] = m
|
|
return max_length, msg
|
|
|
|
m = msg_[1]["content"]
|
|
m = encoder.decode(encoder.encode(m)[:max_length - l])
|
|
msg[1]["content"] = m
|
|
return max_length, msg
|
|
|
|
|
|
def chat(dialog, messages, stream=True, **kwargs):
|
|
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
|
llm = LLMService.query(llm_name=dialog.llm_id)
|
|
if not llm:
|
|
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=dialog.llm_id)
|
|
if not llm:
|
|
raise LookupError("LLM(%s) not found" % dialog.llm_id)
|
|
max_tokens = 1024
|
|
else:
|
|
max_tokens = llm[0].max_tokens
|
|
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
|
|
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
|
if len(embd_nms) != 1:
|
|
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
|
|
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
|
|
|
|
questions = [m["content"] for m in messages if m["role"] == "user"]
|
|
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
|
|
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
|
|
|
prompt_config = dialog.prompt_config
|
|
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
|
|
|
|
if field_map:
|
|
chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
|
|
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
|
|
if ans:
|
|
yield ans
|
|
return
|
|
|
|
for p in prompt_config["parameters"]:
|
|
if p["key"] == "knowledge":
|
|
continue
|
|
if p["key"] not in kwargs and not p["optional"]:
|
|
raise KeyError("Miss parameter: " + p["key"])
|
|
if p["key"] not in kwargs:
|
|
prompt_config["system"] = prompt_config["system"].replace(
|
|
"{%s}" % p["key"], " ")
|
|
|
|
rerank_mdl = None
|
|
if dialog.rerank_id:
|
|
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
|
|
|
|
for _ in range(len(questions) // 2):
|
|
questions.append(questions[-1])
|
|
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
|
|
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
|
|
else:
|
|
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
|
dialog.similarity_threshold,
|
|
dialog.vector_similarity_weight,
|
|
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
|
|
top=1024, aggs=False, rerank_mdl=rerank_mdl)
|
|
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
|
|
|
if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
|
|
questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
|
|
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
|
dialog.similarity_threshold,
|
|
dialog.vector_similarity_weight,
|
|
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
|
|
top=1024, aggs=False, rerank_mdl=rerank_mdl)
|
|
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
|
|
|
chat_logger.info(
|
|
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
|
|
|
|
if not knowledges and prompt_config.get("empty_response"):
|
|
yield {"answer": prompt_config["empty_response"], "reference": kbinfos}
|
|
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
|
|
|
|
kwargs["knowledge"] = "\n".join(knowledges)
|
|
gen_conf = dialog.llm_setting
|
|
|
|
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
|
|
msg.extend([{"role": m["role"], "content": m["content"]}
|
|
for m in messages if m["role"] != "system"])
|
|
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
|
|
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
|
|
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["max_tokens"] = min(
|
|
gen_conf["max_tokens"],
|
|
max_tokens - used_token_count)
|
|
|
|
def decorate_answer(answer):
|
|
nonlocal prompt_config, knowledges, kwargs, kbinfos
|
|
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
|
|
answer, idx = retrievaler.insert_citations(answer,
|
|
[ck["content_ltks"]
|
|
for ck in kbinfos["chunks"]],
|
|
[ck["vector"]
|
|
for ck in kbinfos["chunks"]],
|
|
embd_mdl,
|
|
tkweight=1 - dialog.vector_similarity_weight,
|
|
vtweight=dialog.vector_similarity_weight)
|
|
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
|
|
recall_docs = [
|
|
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
|
|
if not recall_docs: recall_docs = kbinfos["doc_aggs"]
|
|
kbinfos["doc_aggs"] = recall_docs
|
|
|
|
refs = deepcopy(kbinfos)
|
|
for c in refs["chunks"]:
|
|
if c.get("vector"):
|
|
del c["vector"]
|
|
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
|
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
|
|
return {"answer": answer, "reference": refs}
|
|
|
|
if stream:
|
|
answer = ""
|
|
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], gen_conf):
|
|
answer = ans
|
|
yield {"answer": answer, "reference": {}}
|
|
yield decorate_answer(answer)
|
|
else:
|
|
answer = chat_mdl.chat(
|
|
msg[0]["content"], msg[1:], gen_conf)
|
|
chat_logger.info("User: {}|Assistant: {}".format(
|
|
msg[-1]["content"], answer))
|
|
yield decorate_answer(answer)
|
|
|
|
|
|
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
|
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
|
|
user_promt = """
|
|
表名:{};
|
|
数据库表字段说明如下:
|
|
{}
|
|
|
|
问题如下:
|
|
{}
|
|
请写出SQL, 且只要SQL,不要有其他说明及文字。
|
|
""".format(
|
|
index_name(tenant_id),
|
|
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
|
|
question
|
|
)
|
|
tried_times = 0
|
|
|
|
def get_table():
|
|
nonlocal sys_prompt, user_promt, question, tried_times
|
|
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
|
|
"temperature": 0.06})
|
|
print(user_promt, sql)
|
|
chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}")
|
|
sql = re.sub(r"[\r\n]+", " ", sql.lower())
|
|
sql = re.sub(r".*select ", "select ", sql.lower())
|
|
sql = re.sub(r" +", " ", sql)
|
|
sql = re.sub(r"([;;]|```).*", "", sql)
|
|
if sql[:len("select ")] != "select ":
|
|
return None, None
|
|
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
|
|
if sql[:len("select *")] != "select *":
|
|
sql = "select doc_id,docnm_kwd," + sql[6:]
|
|
else:
|
|
flds = []
|
|
for k in field_map.keys():
|
|
if k in forbidden_select_fields4resume:
|
|
continue
|
|
if len(flds) > 11:
|
|
break
|
|
flds.append(k)
|
|
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
|
|
|
|
print(f"“{question}” get SQL(refined): {sql}")
|
|
|
|
chat_logger.info(f"“{question}” get SQL(refined): {sql}")
|
|
tried_times += 1
|
|
return retrievaler.sql_retrieval(sql, format="json"), sql
|
|
|
|
tbl, sql = get_table()
|
|
if tbl is None:
|
|
return None
|
|
if tbl.get("error") and tried_times <= 2:
|
|
user_promt = """
|
|
表名:{};
|
|
数据库表字段说明如下:
|
|
{}
|
|
|
|
问题如下:
|
|
{}
|
|
|
|
你上一次给出的错误SQL如下:
|
|
{}
|
|
|
|
后台报错如下:
|
|
{}
|
|
|
|
请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
|
|
""".format(
|
|
index_name(tenant_id),
|
|
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
|
|
question, sql, tbl["error"]
|
|
)
|
|
tbl, sql = get_table()
|
|
chat_logger.info("TRY it again: {}".format(sql))
|
|
|
|
chat_logger.info("GET table: {}".format(tbl))
|
|
print(tbl)
|
|
if tbl.get("error") or len(tbl["rows"]) == 0:
|
|
return None
|
|
|
|
docid_idx = set([ii for ii, c in enumerate(
|
|
tbl["columns"]) if c["name"] == "doc_id"])
|
|
docnm_idx = set([ii for ii, c in enumerate(
|
|
tbl["columns"]) if c["name"] == "docnm_kwd"])
|
|
clmn_idx = [ii for ii in range(
|
|
len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
|
|
|
|
|
|
clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
|
|
tbl["columns"][i]["name"])) for i in
|
|
clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
|
|
|
|
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
|
|
("|------|" if docid_idx and docid_idx else "")
|
|
|
|
rows = ["|" +
|
|
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
|
|
"|" for r in tbl["rows"]]
|
|
if quota:
|
|
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
|
|
else:
|
|
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
|
|
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
|
|
|
|
if not docid_idx or not docnm_idx:
|
|
chat_logger.warning("SQL missing field: " + sql)
|
|
return {
|
|
"answer": "\n".join([clmns, line, rows]),
|
|
"reference": {"chunks": [], "doc_aggs": []}
|
|
}
|
|
|
|
docid_idx = list(docid_idx)[0]
|
|
docnm_idx = list(docnm_idx)[0]
|
|
doc_aggs = {}
|
|
for r in tbl["rows"]:
|
|
if r[docid_idx] not in doc_aggs:
|
|
doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
|
|
doc_aggs[r[docid_idx]]["count"] += 1
|
|
return {
|
|
"answer": "\n".join([clmns, line, rows]),
|
|
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
|
|
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
|
|
doc_aggs.items()]}
|
|
}
|
|
|
|
|
|
def relevant(tenant_id, llm_id, question, contents: list):
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
|
prompt = """
|
|
You are a grader assessing relevance of a retrieved document to a user question.
|
|
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
|
|
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
|
|
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
|
|
No other words needed except 'yes' or 'no'.
|
|
"""
|
|
if not contents:return False
|
|
contents = "Documents: \n" + " - ".join(contents)
|
|
contents = f"Question: {question}\n" + contents
|
|
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
|
|
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
|
|
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
|
|
if ans.lower().find("yes") >= 0: return True
|
|
return False
|
|
|
|
|
|
def rewrite(tenant_id, llm_id, question):
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
|
prompt = """
|
|
You are an expert at query expansion to generate a paraphrasing of a question.
|
|
I can't retrieval relevant information from the knowledge base by using user's question directly.
|
|
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
|
|
writing the abbreviation in its entirety, adding some extra descriptions or explanations,
|
|
changing the way of expression, translating the original question into another language (English/Chinese), etc.
|
|
And return 5 versions of question and one is from translation.
|
|
Just list the question. No other words are needed.
|
|
"""
|
|
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
|
|
return ans
|
|
|