|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
from huggingface_hub import snapshot_download |
|
from zhipuai import ZhipuAI |
|
import os |
|
from abc import ABC |
|
from ollama import Client |
|
import dashscope |
|
from openai import OpenAI |
|
from FlagEmbedding import FlagModel |
|
import torch |
|
import numpy as np |
|
|
|
from api.utils.file_utils import get_project_base_directory |
|
from rag.utils import num_tokens_from_string |
|
|
|
|
|
try: |
|
flag_model = FlagModel(os.path.join( |
|
get_project_base_directory(), |
|
"rag/res/bge-large-zh-v1.5"), |
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", |
|
use_fp16=torch.cuda.is_available()) |
|
except Exception as e: |
|
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5", |
|
local_dir=os.path.join(get_project_base_directory(), "rag/res/bge-large-zh-v1.5"), |
|
local_dir_use_symlinks=False) |
|
flag_model = FlagModel(model_dir, |
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", |
|
use_fp16=torch.cuda.is_available()) |
|
|
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
def encode_queries(self, text: str): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
|
|
class HuEmbedding(Base): |
|
def __init__(self, *args, **kwargs): |
|
""" |
|
If you have trouble downloading HuggingFace models, -_^ this might help!! |
|
|
|
For Linux: |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
|
For Windows: |
|
Good luck |
|
^_- |
|
|
|
""" |
|
self.model = flag_model |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
texts = [t[:2000] for t in texts] |
|
token_count = 0 |
|
for t in texts: |
|
token_count += num_tokens_from_string(t) |
|
res = [] |
|
for i in range(0, len(texts), batch_size): |
|
res.extend(self.model.encode(texts[i:i + batch_size]).tolist()) |
|
return np.array(res), token_count |
|
|
|
def encode_queries(self, text: str): |
|
token_count = num_tokens_from_string(text) |
|
return self.model.encode_queries([text]).tolist()[0], token_count |
|
|
|
|
|
class OpenAIEmbed(Base): |
|
def __init__(self, key, model_name="text-embedding-ada-002", |
|
base_url="https://api.openai.com/v1"): |
|
if not base_url: |
|
base_url = "https://api.openai.com/v1" |
|
self.client = OpenAI(api_key=key, base_url=base_url) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embeddings.create(input=texts, |
|
model=self.model_name) |
|
return np.array([d.embedding for d in res.data] |
|
), res.usage.total_tokens |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings.create(input=[text], |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class QWenEmbed(Base): |
|
def __init__(self, key, model_name="text_embedding_v2", **kwargs): |
|
dashscope.api_key = key |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=10): |
|
import dashscope |
|
res = [] |
|
token_count = 0 |
|
texts = [txt[:2048] for txt in texts] |
|
for i in range(0, len(texts), batch_size): |
|
resp = dashscope.TextEmbedding.call( |
|
model=self.model_name, |
|
input=texts[i:i + batch_size], |
|
text_type="document" |
|
) |
|
embds = [[] for _ in range(len(resp["output"]["embeddings"]))] |
|
for e in resp["output"]["embeddings"]: |
|
embds[e["text_index"]] = e["embedding"] |
|
res.extend(embds) |
|
token_count += resp["usage"]["total_tokens"] |
|
return np.array(res), token_count |
|
|
|
def encode_queries(self, text): |
|
resp = dashscope.TextEmbedding.call( |
|
model=self.model_name, |
|
input=text[:2048], |
|
text_type="query" |
|
) |
|
return np.array(resp["output"]["embeddings"][0] |
|
["embedding"]), resp["usage"]["total_tokens"] |
|
|
|
|
|
class ZhipuEmbed(Base): |
|
def __init__(self, key, model_name="embedding-2", **kwargs): |
|
self.client = ZhipuAI(api_key=key) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
arr = [] |
|
tks_num = 0 |
|
for txt in texts: |
|
res = self.client.embeddings.create(input=txt, |
|
model=self.model_name) |
|
arr.append(res.data[0].embedding) |
|
tks_num += res.usage.total_tokens |
|
return np.array(arr), tks_num |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings.create(input=text, |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class OllamaEmbed(Base): |
|
def __init__(self, key, model_name, **kwargs): |
|
self.client = Client(host=kwargs["base_url"]) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
arr = [] |
|
tks_num = 0 |
|
for txt in texts: |
|
res = self.client.embeddings(prompt=txt, |
|
model=self.model_name) |
|
arr.append(res["embedding"]) |
|
tks_num += 128 |
|
return np.array(arr), tks_num |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings(prompt=text, |
|
model=self.model_name) |
|
return np.array(res["embedding"]), 128 |
|
|
|
|
|
class FastEmbed(Base): |
|
def __init__( |
|
self, |
|
key: Optional[str] = None, |
|
model_name: str = "BAAI/bge-small-en-v1.5", |
|
cache_dir: Optional[str] = None, |
|
threads: Optional[int] = None, |
|
**kwargs, |
|
): |
|
from fastembed import TextEmbedding |
|
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs) |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
|
|
|
|
encodings = self._model.model.tokenizer.encode_batch(texts) |
|
total_tokens = sum(len(e) for e in encodings) |
|
|
|
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)] |
|
|
|
return np.array(embeddings), total_tokens |
|
|
|
def encode_queries(self, text: str): |
|
|
|
|
|
encoding = self._model.model.tokenizer.encode(text) |
|
embedding = next(self._model.query_embed(text)).tolist() |
|
|
|
return np.array(embedding), len(encoding.ids) |
|
|
|
|
|
class XinferenceEmbed(Base): |
|
def __init__(self, key, model_name="", base_url=""): |
|
self.client = OpenAI(api_key="xxx", base_url=base_url) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embeddings.create(input=texts, |
|
model=self.model_name) |
|
return np.array([d.embedding for d in res.data] |
|
), res.usage.total_tokens |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings.create(input=[text], |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class QAnythingEmbed(Base): |
|
_client = None |
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs): |
|
from BCEmbedding import EmbeddingModel as qanthing |
|
if not QAnythingEmbed._client: |
|
try: |
|
print("LOADING BCE...") |
|
QAnythingEmbed._client = qanthing(model_name_or_path=os.path.join( |
|
get_project_base_directory(), |
|
"rag/res/bce-embedding-base_v1")) |
|
except Exception as e: |
|
QAnythingEmbed._client = qanthing( |
|
model_name_or_path=model_name.replace( |
|
"maidalun1020", "InfiniFlow")) |
|
|
|
def encode(self, texts: list, batch_size=10): |
|
res = [] |
|
token_count = 0 |
|
for t in texts: |
|
token_count += num_tokens_from_string(t) |
|
for i in range(0, len(texts), batch_size): |
|
embds = QAnythingEmbed._client.encode(texts[i:i + batch_size]) |
|
res.extend(embds) |
|
return np.array(res), token_count |
|
|
|
def encode_queries(self, text): |
|
embds = QAnythingEmbed._client.encode([text]) |
|
return np.array(embds[0]), num_tokens_from_string(text) |
|
|