|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC |
|
|
|
import dashscope |
|
from openai import OpenAI |
|
from FlagEmbedding import FlagModel |
|
import torch |
|
import os |
|
import numpy as np |
|
|
|
from rag.utils import num_tokens_from_string |
|
|
|
flag_model = FlagModel("BAAI/bge-large-zh-v1.5", |
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", |
|
use_fp16=torch.cuda.is_available()) |
|
|
|
class Base(ABC): |
|
def __init__(self, key, model_name): |
|
pass |
|
|
|
|
|
def encode(self, texts: list, batch_size=32): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
def encode_queries(self, text: str): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
|
|
class HuEmbedding(Base): |
|
def __init__(self, key="", model_name=""): |
|
""" |
|
If you have trouble downloading HuggingFace models, -_^ this might help!! |
|
|
|
For Linux: |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
|
For Windows: |
|
Good luck |
|
^_- |
|
|
|
""" |
|
self.model = flag_model |
|
|
|
|
|
def encode(self, texts: list, batch_size=32): |
|
token_count = 0 |
|
for t in texts: token_count += num_tokens_from_string(t) |
|
res = [] |
|
for i in range(0, len(texts), batch_size): |
|
res.extend(self.model.encode(texts[i:i + batch_size]).tolist()) |
|
return np.array(res), token_count |
|
|
|
def encode_queries(self, text: str): |
|
token_count = num_tokens_from_string(text) |
|
return self.model.encode_queries([text]).tolist()[0], token_count |
|
|
|
|
|
class OpenAIEmbed(Base): |
|
def __init__(self, key, model_name="text-embedding-ada-002"): |
|
self.client = OpenAI(api_key=key) |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embeddings.create(input=texts, |
|
model=self.model_name) |
|
return np.array([d.embedding for d in res.data]), res.usage.total_tokens |
|
|
|
def encode_queries(self, text): |
|
res = self.client.embeddings.create(input=[text], |
|
model=self.model_name) |
|
return np.array(res.data[0].embedding), res.usage.total_tokens |
|
|
|
|
|
class QWenEmbed(Base): |
|
def __init__(self, key, model_name="text_embedding_v2"): |
|
dashscope.api_key = key |
|
self.model_name = model_name |
|
|
|
def encode(self, texts: list, batch_size=10): |
|
import dashscope |
|
res = [] |
|
token_count = 0 |
|
texts = [txt[:2048] for txt in texts] |
|
for i in range(0, len(texts), batch_size): |
|
resp = dashscope.TextEmbedding.call( |
|
model=self.model_name, |
|
input=texts[i:i+batch_size], |
|
text_type="document" |
|
) |
|
embds = [[]] * len(resp["output"]["embeddings"]) |
|
for e in resp["output"]["embeddings"]: |
|
embds[e["text_index"]] = e["embedding"] |
|
res.extend(embds) |
|
token_count += resp["usage"]["input_tokens"] |
|
return np.array(res), token_count |
|
|
|
def encode_queries(self, text): |
|
resp = dashscope.TextEmbedding.call( |
|
model=self.model_name, |
|
input=text[:2048], |
|
text_type="query" |
|
) |
|
return np.array(resp["output"]["embeddings"][0]["embedding"]), resp["usage"]["input_tokens"] |