|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from tika import parser
|
|
from io import BytesIO
|
|
from docx import Document
|
|
from timeit import default_timer as timer
|
|
import re
|
|
from deepdoc.parser.pdf_parser import PlainParser
|
|
from rag.nlp import huqie, naive_merge, tokenize_table, tokenize_chunks, find_codec
|
|
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
|
|
from rag.settings import cron_logger
|
|
|
|
class Docx(DocxParser):
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __clean(self, line):
|
|
line = re.sub(r"\u3000", " ", line).strip()
|
|
return line
|
|
|
|
def __call__(self, filename, binary=None, from_page=0, to_page=100000):
|
|
self.doc = Document(
|
|
filename) if not binary else Document(BytesIO(binary))
|
|
pn = 0
|
|
lines = []
|
|
for p in self.doc.paragraphs:
|
|
if pn > to_page:
|
|
break
|
|
if from_page <= pn < to_page and p.text.strip():
|
|
lines.append(self.__clean(p.text))
|
|
for run in p.runs:
|
|
if 'lastRenderedPageBreak' in run._element.xml:
|
|
pn += 1
|
|
continue
|
|
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
|
pn += 1
|
|
tbls = []
|
|
for tb in self.doc.tables:
|
|
html= "<table>"
|
|
for r in tb.rows:
|
|
html += "<tr>"
|
|
i = 0
|
|
while i < len(r.cells):
|
|
span = 1
|
|
c = r.cells[i]
|
|
for j in range(i+1, len(r.cells)):
|
|
if c.text == r.cells[j].text:
|
|
span += 1
|
|
i = j
|
|
i += 1
|
|
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
|
html += "</tr>"
|
|
html += "</table>"
|
|
tbls.append(((None, html), ""))
|
|
return [(l, "") for l in lines if l], tbls
|
|
|
|
|
|
class Pdf(PdfParser):
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
start = timer()
|
|
callback(msg="OCR is running...")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished")
|
|
cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
|
|
|
|
start = timer()
|
|
self._layouts_rec(zoomin)
|
|
callback(0.63, "Layout analysis finished.")
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.65, "Table analysis finished.")
|
|
self._text_merge()
|
|
callback(0.67, "Text merging finished")
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
|
|
self._concat_downward()
|
|
|
|
|
|
cron_logger.info("layouts: {}".format(timer() - start))
|
|
return [(b["text"], self._line_tag(b, zoomin))
|
|
for b in self.boxes], tbls
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Supported file formats are docx, pdf, excel, txt.
|
|
This method apply the naive ways to chunk files.
|
|
Successive text will be sliced into pieces using 'delimiter'.
|
|
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
|
"""
|
|
|
|
eng = lang.lower() == "english"
|
|
parser_config = kwargs.get(
|
|
"parser_config", {
|
|
"chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": True})
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
|
res = []
|
|
pdf_parser = None
|
|
sections = []
|
|
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections, tbls = Docx()(filename, binary)
|
|
res = tokenize_table(tbls, doc, eng)
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
pdf_parser = Pdf(
|
|
) if parser_config.get("layout_recognize", True) else PlainParser()
|
|
sections, tbls = pdf_parser(filename if not binary else binary,
|
|
from_page=from_page, to_page=to_page, callback=callback)
|
|
res = tokenize_table(tbls, doc, eng)
|
|
|
|
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
excel_parser = ExcelParser()
|
|
sections = [(excel_parser.html(binary), "")]
|
|
|
|
elif re.search(r"\.(txt|md)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding)
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:
|
|
break
|
|
txt += l
|
|
sections = txt.split("\n")
|
|
sections = [(l, "") for l in sections if l]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.doc$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
binary = BytesIO(binary)
|
|
doc_parsed = parser.from_buffer(binary)
|
|
sections = doc_parsed['content'].split('\n')
|
|
sections = [(l, "") for l in sections if l]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
"file type not supported yet(doc, docx, pdf, txt supported)")
|
|
|
|
st = timer()
|
|
chunks = naive_merge(
|
|
sections, parser_config.get(
|
|
"chunk_token_num", 128), parser_config.get(
|
|
"delimiter", "\n!?。;!?"))
|
|
|
|
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
|
cron_logger.info("naive_merge({}): {}".format(filename, timer() - st))
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
|
|
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
|
|